""" Hugging Face compatible implementation of Open-MAGVIt2 Code reference: https://github.com/TencentARC/Open-MAGVIT2 """ from transformers import PretrainedConfig class EncoderDecoderConfig(PretrainedConfig): model_type = "resnet_encoder_decoder" def __init__(self, **kwargs): super().__init__(**kwargs) self.ch = kwargs.get("ch", 128) self.in_channels = kwargs.get("in_channels", 3) self.out_ch = kwargs.get("out_ch", 3) self.z_channels = kwargs.get("z_channels", 18) self.num_res_blocks = kwargs.get("num_res_blocks", 2) self.ch_mult = kwargs.get("ch_mult", [1, 1, 2, 2, 4]) class QuantizerConfig(PretrainedConfig): model_type = "lfq_quantizer" def __init__(self, **kwargs): super().__init__(**kwargs) self.dim = kwargs.get("dim", 18) self.codebook_size = kwargs.get("codebook_size", 262144) self.batch_maximization_weight = kwargs.get("batch_maximization_weight", 1.0) self.sample_minimization_weight = kwargs.get("sample_minimization_weight", 1.0) class LFQTokenizerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transform """ model_type = "lfq_tokenizer" def __init__(self, **kwargs): super().__init__(**kwargs) self.encoder_decoder_config = kwargs.get("encoder_decoder_config", EncoderDecoderConfig()) self.quantizer_config = kwargs.get("quantizer_config", QuantizerConfig())