import argparse import json import random from pathlib import Path import imageio import numpy as np import torch from PIL import Image from transformers import AutoModel from tqdm import tqdm # Constants IMAGE_SIZE = (288, 512) N_FRAMES_PER_ROUND = 25 MAX_NUM_FRAMES = 50 N_TOKENS_PER_FRAME = 576 TRAJ_TEMPLATE_PATH = Path("./assets/template_trajectory.json") PATH_START_ID = 9 PATH_POINT_INTERVAL = 10 N_ACTION_TOKENS = 6 # change here if you want to use your own images CONDITIONING_FRAMES_DIR = Path("./assets/conditioning_frames") CONDITIONING_FRAMES_PATH_LIST = [ CONDITIONING_FRAMES_DIR / "001.png", CONDITIONING_FRAMES_DIR / "002.png", CONDITIONING_FRAMES_DIR / "003.png" ] def set_random_seed(seed: int = 0): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def preprocess_image(image: Image.Image, size: tuple[int, int] = (288, 512)) -> torch.Tensor: H, W = size image = image.convert("RGB") image = image.resize((W, H)) image_array = np.array(image) image_array = (image_array / 127.5 - 1.0).astype(np.float32) return torch.from_numpy(image_array).permute(2, 0, 1).unsqueeze(0).float() def to_np_images(images: torch.Tensor) -> np.ndarray: images = images.detach().cpu() images = torch.clamp(images, -1., 1.) images = (images + 1.) / 2. images = images.permute(0, 2, 3, 1).numpy() return (255 * images).astype(np.uint8) def load_images(file_path_list: list[Path], size: tuple[int, int] = (288, 512)) -> torch.Tensor: images = [] for file_path in file_path_list: image = Image.open(file_path) image = preprocess_image(image, size) images.append(image) return torch.cat(images, dim=0) def save_images_to_mp4(images: np.ndarray, output_path: Path, fps: int = 10): writer = imageio.get_writer(output_path, fps=fps) for img in images: writer.append_data(img) writer.close() def determine_num_rounds(num_frames: int, num_overlapping_frames: int, n_initial_frames: int) -> int: n_rounds = (num_frames - n_initial_frames) // (N_FRAMES_PER_ROUND - num_overlapping_frames) if (num_frames - n_initial_frames) % (N_FRAMES_PER_ROUND - num_overlapping_frames) > 0: n_rounds += 1 return n_rounds def prepare_action( traj_template: dict, cmd: str, path_start_id: int, path_point_interval: int, n_action_tokens: int = 5, start_index: int = 0, n_frames: int = 25 ) -> torch.Tensor: trajs = traj_template[cmd]["instruction_trajs"] actions = [] timesteps = np.arange(0.0, 3.0, 0.05) for i in range(start_index, start_index + n_frames): traj = trajs[i][path_start_id::path_point_interval][:n_action_tokens] action = np.array(traj) timestep = timesteps[path_start_id::path_point_interval][:n_action_tokens] action = np.concatenate([ action[:, [1, 0]], timestep.reshape(-1, 1) ], axis=1) actions.append(torch.tensor(action)) return torch.cat(actions, dim=0) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=0) parser.add_argument("--output_dir", type=Path) parser.add_argument("--cmd", type=str, default="curving_to_left/curving_to_left_moderate") parser.add_argument("--num_frames", type=int, default=25) parser.add_argument("--num_overlapping_frames", type=int, default=3) args = parser.parse_args() assert args.num_frames <= MAX_NUM_FRAMES, f"`num_frames` should be less than or equal to {MAX_NUM_FRAMES}" assert args.num_overlapping_frames < N_FRAMES_PER_ROUND, f"`num_overlapping_frames` should be less than {N_FRAMES_PER_ROUND}" set_random_seed(args.seed) if args.output_dir is None: output_dir = Path(f"./outputs/{args.cmd}") else: output_dir = args.output_dir output_dir.mkdir(parents=True, exist_ok=True) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tokenizer = AutoModel.from_pretrained("turing-motors/Terra", subfolder="lfq_tokenizer_B_256", trust_remote_code=True).to(device).eval() model = AutoModel.from_pretrained("turing-motors/Terra", subfolder="world_model", trust_remote_code=True).to(device).eval() conditioning_frames = load_images(CONDITIONING_FRAMES_PATH_LIST, IMAGE_SIZE).to(device) with torch.inference_mode(), torch.autocast(device_type="cuda"): input_ids = tokenizer.tokenize(conditioning_frames).detach().unsqueeze(0) num_rounds = determine_num_rounds(args.num_frames, args.num_overlapping_frames, len(CONDITIONING_FRAMES_PATH_LIST)) print(f"Number of generation rounds: {num_rounds}") with open(TRAJ_TEMPLATE_PATH) as f: traj_template = json.load(f) all_outputs = [] for round in range(num_rounds): start_index = round * (N_FRAMES_PER_ROUND - args.num_overlapping_frames) num_frames_for_round = min(N_FRAMES_PER_ROUND, args.num_frames - start_index) actions = prepare_action( traj_template, args.cmd, PATH_START_ID, PATH_POINT_INTERVAL, N_ACTION_TOKENS, start_index, num_frames_for_round ).unsqueeze(0).to(device).float() if round == 0: num_generated_tokens = N_TOKENS_PER_FRAME * (num_frames_for_round - len(CONDITIONING_FRAMES_PATH_LIST)) else: num_generated_tokens = N_TOKENS_PER_FRAME * (num_frames_for_round - args.num_overlapping_frames) progress_bar = tqdm(total=num_generated_tokens, desc=f"Round {round + 1}") with torch.inference_mode(), torch.autocast(device_type="cuda"): output_tokens = model.generate( input_ids=input_ids, actions=actions, do_sample=True, max_length=N_TOKENS_PER_FRAME * num_frames_for_round, temperature=1.0, top_p=1.0, use_cache=True, pad_token_id=None, eos_token_id=None, progress_bar=progress_bar ) if round == 0: all_outputs.append(output_tokens[0]) else: all_outputs.append(output_tokens[0, args.num_overlapping_frames * N_TOKENS_PER_FRAME:]) input_ids = output_tokens[:, -args.num_overlapping_frames * N_TOKENS_PER_FRAME:] progress_bar.close() output_ids = torch.cat(all_outputs) # Calculate the shape of the latent tensor downsample_ratio = 1 for coef in tokenizer.config.encoder_decoder_config["ch_mult"]: downsample_ratio *= coef h = IMAGE_SIZE[0] // downsample_ratio w = IMAGE_SIZE[1] // downsample_ratio c = tokenizer.config.encoder_decoder_config["z_channels"] latent_shape = (len(output_ids) // 576, h, w, c) # Decode the latent tensor to images with torch.inference_mode(), torch.autocast(device_type="cuda"): reconstructed = tokenizer.decode_tokens(output_ids, latent_shape) reconstructed_images = to_np_images(reconstructed) save_images_to_mp4(reconstructed_images, output_dir / "generated.mp4", fps=10)