import torch.nn as nn from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification, PreTrainedModel,AutoConfig, BertModel from transformers.modeling_outputs import SequenceClassifierOutput from transformers.models.bert.configuration_bert import BertConfig class classifier(nn.Module): def __init__(self,config): super().__init__() self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True) self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True) def forward(self,tensor): out1 = self.layer0(tensor) return self.layer1(out1) class TunBERT(PreTrainedModel): config_class = BertConfig def __init__(self, config): super().__init__(config) self.BertModel = BertModel(config) self.dropout = nn.Dropout(p=0.1, inplace=False) self.classifier = classifier(config) def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) : outputs = self.BertModel(input_ids,token_type_ids,attention_mask) sequence_output = self.dropout(outputs.last_hidden_state) logits = self.classifier(sequence_output) loss =None if labels is not None : loss_func = nn.CrossentropyLoss() loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1)) return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)