patrickvonplaten commited on
Commit
c9f4122
·
1 Parent(s): 982708e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -36
README.md CHANGED
@@ -3,60 +3,123 @@ language: mn
3
  datasets:
4
  - common_voice
5
  tags:
6
- - speech
7
  - audio
8
  - automatic-speech-recognition
 
 
9
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
- ## Evaluation on Common Voice Mongolian Test
 
 
 
 
 
 
 
 
13
  ```python
 
14
  import torchaudio
15
- from datasets import load_dataset, load_metric
16
- from transformers import (
17
- Wav2Vec2ForCTC,
18
- Wav2Vec2Processor,
19
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  import torch
 
 
 
21
  import re
22
- import sys
23
 
24
- model_name = "tugstugi/wav2vec2-large-xlsr-53-mongolian"
25
- device = "cuda"
26
 
27
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]' # noqa: W605
 
 
28
 
29
- model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
30
- processor = Wav2Vec2Processor.from_pretrained(model_name)
31
 
32
- ds = load_dataset("common_voice", "mn", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
 
 
 
 
 
 
33
 
34
- resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
35
 
36
- def map_to_array(batch):
37
- speech, _ = torchaudio.load(batch["path"])
38
- batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
39
- batch["sampling_rate"] = resampler.new_freq
40
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
41
- return batch
42
 
43
- ds = ds.map(map_to_array)
 
44
 
45
- def map_to_pred(batch):
46
- features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
47
- input_values = features.input_values.to(device)
48
- attention_mask = features.attention_mask.to(device)
49
- with torch.no_grad():
50
- logits = model(input_values, attention_mask=attention_mask).logits
51
  pred_ids = torch.argmax(logits, dim=-1)
52
- batch["predicted"] = processor.batch_decode(pred_ids)
53
- batch["target"] = batch["sentence"]
54
- return batch
55
-
56
- result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
57
 
58
- wer = load_metric("wer")
59
 
60
- print(wer.compute(predictions=result["predicted"], references=result["target"]))
61
  ```
62
- **Result**: 42.80 %
 
 
 
 
 
 
 
 
 
3
  datasets:
4
  - common_voice
5
  tags:
 
6
  - audio
7
  - automatic-speech-recognition
8
+ - speech
9
+ - xlsr-fine-tuning-week
10
  license: apache-2.0
11
+ model-index:
12
+ - name: XLSR Wav2Vec2 Mongolian by Tugstugi
13
+ results:
14
+ - task:
15
+ name: Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Common Voice mn
19
+ type: common_voice
20
+ args: mn
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: 42.80
25
  ---
26
 
27
+ # Wav2Vec2-Large-XLSR-53-Mongolian
28
+
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+
32
+ ## Usage
33
+
34
+ The model can be used directly (without a language model) as follows:
35
+
36
  ```python
37
+ import torch
38
  import torchaudio
39
+ from datasets import load_dataset
40
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
41
+
42
+ test_dataset = load_dataset("common_voice", "mn", split="test[:2%]").
43
+
44
+ processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-53-mongolian")
45
+ model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-53-mongolian")
46
+
47
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
+
49
+ # Preprocessing the datasets.
50
+ # We need to read the aduio files as arrays
51
+ def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ return batch
55
+
56
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
57
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
+
59
+ with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+
62
+ predicted_ids = torch.argmax(logits, dim=-1)
63
+
64
+ print("Prediction:", processor.batch_decode(predicted_ids))
65
+ print("Reference:", test_dataset["sentence"][:2])
66
+ ```
67
+
68
+
69
+ ## Evaluation
70
+
71
+ The model can be evaluated as follows on the Mongolian test data of Common Voice.
72
+
73
+
74
+ ```python
75
  import torch
76
+ import torchaudio
77
+ from datasets import load_dataset, load_metric
78
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
  import re
 
80
 
81
+ test_dataset = load_dataset("common_voice", "mn", split="test")
82
+ wer = load_metric("wer")
83
 
84
+ processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-53-mongolian")
85
+ model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-53-mongolian")
86
+ model.to("cuda")
87
 
88
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
89
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
90
 
91
+ # Preprocessing the datasets.
92
+ # We need to read the aduio files as arrays
93
+ def speech_file_to_array_fn(batch):
94
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
96
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ return batch
98
 
99
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
+ # Preprocessing the datasets.
102
+ # We need to read the aduio files as arrays
103
+ def evaluate(batch):
104
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
 
 
105
 
106
+ with torch.no_grad():
107
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
 
 
 
 
 
 
109
  pred_ids = torch.argmax(logits, dim=-1)
110
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ return batch
 
 
 
112
 
113
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
 
115
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
  ```
117
+
118
+ **Test Result**: 42.80 %
119
+
120
+
121
+ ## Training
122
+
123
+ The Common Voice `train`, `validation` datasets were used for training.
124
+
125
+ The script used for training can be found ???