--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5aabd191-1ff9-45a3-a74c-bfbe61d260a7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 137803ca902a3d2b_train_data.json ds_type: json format: custom path: /workspace/input_data/137803ca902a3d2b_train_data.json type: field_input: knowledge field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 2 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: tuanna08go/5aabd191-1ff9-45a3-a74c-bfbe61d260a7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 5 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 2 max_steps: 50 micro_batch_size: 1 mlflow_experiment_name: /tmp/137803ca902a3d2b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 2 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: null wandb_mode: online wandb_name: 5aabd191-1ff9-45a3-a74c-bfbe61d260a7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5aabd191-1ff9-45a3-a74c-bfbe61d260a7 warmup_steps: 2 weight_decay: 0.01 xformers_attention: true ```

# 5aabd191-1ff9-45a3-a74c-bfbe61d260a7 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.1465 | | 0.8438 | 0.0044 | 25 | 0.8649 | | 0.8318 | 0.0089 | 50 | 0.8382 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1