--- license: apache-2.0 datasets: - Vi-VLM/Vista language: - vi --- - Merged LoRA - Training script ```bash #!/bin/bash PRETRAIN_CKPT_PATH=checkpoints/llava-qwen1.5-0.5b-pretrain-vista_description-3ep BASE_MODEL=Qwen/Qwen1.5-0.5B ROOT_DATA=data/llm_data WANDB_PROJECT=chart-vision-llm CUDA_VISIBLE_DEVICES=0,1,2,3,4 deepspeed moellava/train/train_mem.py \ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 0.00000125 \ --deepspeed ./scripts/zero2.json \ --model_name_or_path $BASE_MODEL \ --version qwen \ --data_path $ROOT_DATA/json_files/vista_llava.json \ --image_folder ${ROOT_DATA}/coco2017/train2017 \ --image_tower google/siglip-base-patch16-256-multilingual \ --image_projector_type mlp2x_gelu \ --pretrain_mm_mlp_adapter $PRETRAIN_CKPT_PATH/mm_projector.bin \ --tune_mm_mlp_adapter True \ --mm_vision_select_layer -2 \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --image_aspect_ratio pad \ --group_by_modality_length True \ --bf16 True \ --output_dir ./checkpoints/ft-llava-qwen1.5-0.5b-vista_llava-lora-2ep \ --num_train_epochs 2 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 2 \ --gradient_accumulation_steps 2 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 5000 \ --save_total_limit 1 \ --learning_rate 2e-5 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 10 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to wandb \ --push_to_hub True \ --cache_dir cache_dir \ --run_name ft-llava-qwen1.5-0.5b-vista_llava-lora-2ep ```