# ------------------------------------------------------------------------------ # Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch # Original licence: Copyright (c) Microsoft, under the MIT License. # ------------------------------------------------------------------------------ import numpy as np def nms(dets, thr): """Greedily select boxes with high confidence and overlap <= thr. Args: dets: [[x1, y1, x2, y2, score]]. thr: Retain overlap < thr. Returns: list: Indexes to keep. """ if len(dets) == 0: return [] x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while len(order) > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thr)[0] order = order[inds + 1] return keep def oks_iou(g, d, a_g, a_d, sigmas=None, vis_thr=None): """Calculate oks ious. Args: g: Ground truth keypoints. d: Detected keypoints. a_g: Area of the ground truth object. a_d: Area of the detected object. sigmas: standard deviation of keypoint labelling. vis_thr: threshold of the keypoint visibility. Returns: list: The oks ious. """ if sigmas is None: sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89 ]) / 10.0 vars = (sigmas * 2)**2 xg = g[0::3] yg = g[1::3] vg = g[2::3] ious = np.zeros(len(d), dtype=np.float32) for n_d in range(0, len(d)): xd = d[n_d, 0::3] yd = d[n_d, 1::3] vd = d[n_d, 2::3] dx = xd - xg dy = yd - yg e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2 if vis_thr is not None: ind = list(vg > vis_thr) and list(vd > vis_thr) e = e[ind] ious[n_d] = np.sum(np.exp(-e)) / len(e) if len(e) != 0 else 0.0 return ious def oks_nms(kpts_db, thr, sigmas=None, vis_thr=None): """OKS NMS implementations. Args: kpts_db: keypoints. thr: Retain overlap < thr. sigmas: standard deviation of keypoint labelling. vis_thr: threshold of the keypoint visibility. Returns: np.ndarray: indexes to keep. """ if len(kpts_db) == 0: return [] scores = np.array([k['score'] for k in kpts_db]) kpts = np.array([k['keypoints'].flatten() for k in kpts_db]) areas = np.array([k['area'] for k in kpts_db]) order = scores.argsort()[::-1] keep = [] while len(order) > 0: i = order[0] keep.append(i) oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, vis_thr) inds = np.where(oks_ovr <= thr)[0] order = order[inds + 1] keep = np.array(keep) return keep def _rescore(overlap, scores, thr, type='gaussian'): """Rescoring mechanism gaussian or linear. Args: overlap: calculated ious scores: target scores. thr: retain oks overlap < thr. type: 'gaussian' or 'linear' Returns: np.ndarray: indexes to keep """ assert len(overlap) == len(scores) assert type in ['gaussian', 'linear'] if type == 'linear': inds = np.where(overlap >= thr)[0] scores[inds] = scores[inds] * (1 - overlap[inds]) else: scores = scores * np.exp(-overlap**2 / thr) return scores def soft_oks_nms(kpts_db, thr, max_dets=20, sigmas=None, vis_thr=None): """Soft OKS NMS implementations. Args: kpts_db thr: retain oks overlap < thr. max_dets: max number of detections to keep. sigmas: Keypoint labelling uncertainty. Returns: np.ndarray: indexes to keep. """ if len(kpts_db) == 0: return [] scores = np.array([k['score'] for k in kpts_db]) kpts = np.array([k['keypoints'].flatten() for k in kpts_db]) areas = np.array([k['area'] for k in kpts_db]) order = scores.argsort()[::-1] scores = scores[order] keep = np.zeros(max_dets, dtype=np.intp) keep_cnt = 0 while len(order) > 0 and keep_cnt < max_dets: i = order[0] oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, vis_thr) order = order[1:] scores = _rescore(oks_ovr, scores[1:], thr) tmp = scores.argsort()[::-1] order = order[tmp] scores = scores[tmp] keep[keep_cnt] = i keep_cnt += 1 keep = keep[:keep_cnt] return keep