import torch import numpy as np import os from core.testers.utils.reranking import re_ranking def euclidean_distance(qf, gf): m = qf.shape[0] n = gf.shape[0] dist_mat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t() dist_mat.addmm_(1, -2, qf, gf.t()) return dist_mat.cpu().numpy() def cosine_similarity(qf, gf): epsilon = 0.00001 dist_mat = qf.mm(gf.t()) qf_norm = torch.norm(qf, p=2, dim=1, keepdim=True) # mx1 gf_norm = torch.norm(gf, p=2, dim=1, keepdim=True) # nx1 qg_normdot = qf_norm.mm(gf_norm.t()) dist_mat = dist_mat.mul(1 / qg_normdot).cpu().numpy() dist_mat = np.clip(dist_mat, -1 + epsilon, 1 - epsilon) dist_mat = np.arccos(dist_mat) return dist_mat def eval_func(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50): """Evaluation with market1501 metric Key: for each query identity, its gallery images from the same camera view are discarded. """ num_q, num_g = distmat.shape # distmat g # q 1 3 2 4 # 4 1 2 3 if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices = np.argsort(distmat, axis=1) # 0 2 1 3 # 1 2 3 0 matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_AP = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query pid and camid q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same pid and camid with query order = indices[q_idx] # select one row remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve # binary vector, positions with value 1 are correct matches orig_cmc = matches[q_idx][keep] if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() #tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] y = np.arange(1, tmp_cmc.shape[0] + 1) * 1.0 tmp_cmc = tmp_cmc / y tmp_cmc = np.asarray(tmp_cmc) * orig_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP class R1_mAP_eval(): def __init__(self, num_query, max_rank=50, feat_norm=True, reranking=False): super(R1_mAP_eval, self).__init__() self.num_query = num_query self.max_rank = max_rank self.feat_norm = feat_norm self.reranking = reranking def reset(self): self.feats = [] self.pids = [] self.camids = [] def update(self, output): # called once for each batch feat, pid, camid = output self.feats.append(feat.cpu()) self.pids.extend(np.asarray(pid)) self.camids.extend(np.asarray(camid)) def compute(self): # called after each epoch feats = torch.cat(self.feats, dim=0) if self.feat_norm: print("The test feature is normalized") feats = torch.nn.functional.normalize(feats, dim=1, p=2) # along channel # query qf = feats[:self.num_query] q_pids = np.asarray(self.pids[:self.num_query]) q_camids = np.asarray(self.camids[:self.num_query]) # gallery gf = feats[self.num_query:] g_pids = np.asarray(self.pids[self.num_query:]) g_camids = np.asarray(self.camids[self.num_query:]) if self.reranking: print('=> Enter reranking') # distmat = re_ranking(qf, gf, k1=20, k2=6, lambda_value=0.3) distmat = re_ranking(qf, gf, k1=50, k2=15, lambda_value=0.3) else: print('=> Computing DistMat with euclidean_distance') distmat = euclidean_distance(qf, gf) cmc, mAP = eval_func(distmat, q_pids, g_pids, q_camids, g_camids) return cmc, mAP, distmat, self.pids, self.camids, qf, gf