tuandunghcmut's picture
Upload folder using huggingface_hub
345ee20 verified
raw
history blame
3.9 kB
import torch
from torch.optim.optimizer import Optimizer, required
class LARS(Optimizer):
r"""Implements layer-wise adaptive rate scaling for SGD, based on
`"Large Batch Training of Convolutional Networks" <https://arxiv.org/abs/1708.03888>`_
Arguments:
- params (:obj:`iterable`): iterable of parameters to optimize or dicts defining parameter groups
- lr (:obj:`float`): learning rate
- momentum (:obj:`float`, optional): momentum factor (default: 0)
- weight_decay (:obj:`float`, optional): weight decay (L2 penalty) (default: 0)
- dampening (:obj:`float`, optional): dampening for momentum (default: 0)
- eta(:obj:`float`): LARS coefficient (default 0.001)
- nesterov (:obj:`bool`, optional): enables Nesterov momentum (default: False)
Example:
>>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9, eta=1e-3)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
"""
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, eta=0.001, nesterov=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
if eta < 0.0:
raise ValueError("Invalid LARS coefficient value: {}".format(eta))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, eta=eta, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening")
super(LARS, self).__init__(params, defaults)
def __setstate__(self, state):
super(LARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
- closure (:obj:`callable`, optional): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
eta = group['eta']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
# compute local learning rate
weight_norm = torch.norm(p.data)
grad_norm = torch.norm(d_p)
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
grad_norm.add_(weight_decay, weight_norm)
local_lr = eta * weight_norm / grad_norm
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(
p.data)
buf.mul_(momentum).add_(d_p)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
p.data.add_(-group['lr']*local_lr, d_p)
return loss