--- license: mit base_model: microsoft/biogpt tags: - generated_from_trainer model-index: - name: results results: [] --- # results This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1870 - Overall Precision: 0.4821 - Overall Recall: 0.5760 - Overall F1: 0.5249 - Overall Accuracy: 0.9506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2295 | 1.0 | 1358 | 0.1735 | 0.3341 | 0.3926 | 0.3610 | 0.9483 | | 0.1401 | 2.0 | 2716 | 0.1512 | 0.3905 | 0.5413 | 0.4537 | 0.9509 | | 0.0948 | 3.0 | 4074 | 0.1627 | 0.4667 | 0.5070 | 0.4860 | 0.9578 | | 0.0778 | 4.0 | 5432 | 0.1672 | 0.4831 | 0.5642 | 0.5205 | 0.9587 | | 0.0614 | 5.0 | 6790 | 0.1755 | 0.4967 | 0.5781 | 0.5344 | 0.9594 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.12.1+cu113 - Datasets 2.18.0 - Tokenizers 0.15.2