--- license: mit language: - ja tags: - generated_from_trainer - ner - bert metrics: - f1 model-index: - name: xlm-roberta-ner-ja results: [] widget: - text: "鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った" - text: "中国では、中国共産党による一党統治が続く" --- # xlm-roberta-ner-ja (Japanese caption : 日本語の固有表現抽出のモデル) This model is a fine-tuned NER (named entity recognition) token classification model of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) (pre-trained cross-lingual ```RobertaModel```) on Wikipedia Japanese NER dataset by Stockmark Inc.
See [here](https://github.com/stockmarkteam/ner-wikipedia-dataset) for the license of this dataset. Each token is labeled by : | Label id | Tag | Description | |---|---|---| | 0 | O | others or nothing | | 1 | PER | person | | 2 | ORG | general corporation organization | | 3 | ORG-P | political organization | | 4 | ORG-O | other organization | | 5 | LOC | location | | 6 | INS | institution, facility | | 7 | PRD | product | | 8 | EVT | event | ## Intended uses & limitations ```python from transformers import AutoModelForTokenClassification from transformers import pipeline model_name = "tsmatz/xlm-roberta-ner-ja" model = AutoModelForTokenClassification.from_pretrained(model_name) classifier = pipeline("token-classification", model=model_name) classifier("鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 446 | 0.1510 | 0.8457 | | No log | 2.0 | 892 | 0.0626 | 0.9261 | | No log | 3.0 | 1338 | 0.0366 | 0.9580 | | No log | 4.0 | 1784 | 0.0196 | 0.9792 | | No log | 5.0 | 2230 | 0.0173 | 0.9864 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1