activation: relu batch_size: 16 beta_max: 50.0 beta_min: 0.1 channels: 64 color_mode: rgb corrector: none d_apply_batchnorm: false d_channels: - 64 - 128 - 256 - 256 d_drop_prob: 0.3 d_kernel_size: 5 d_lr: 0.0001 d_output_activation: null d_steps: 3 dataset_name: celeba drop_prob: null embed_dim: 256 epochs: 100 eval_freq: 1 g_apply_batchnorm: true g_channels: - 256 - 256 - 256 - 128 g_drop_prob: null g_first_dense_size: 128 g_kernel_size: 5 g_lr: 0.0001 g_output_activation: tanh g_upmode: upconv gp_weight: 1 image_range: - 0 - 1 image_shape: - 64 - 64 - 3 image_size: 64 kernel_size: 3 label_sigma: 0.05 latent_dim: 64 likelihood_weighting: false lr: 0.0002 model_name: score n_steps_each: 1 noise_removal: true normalization: batch num_plot_img: 16 num_scales: 1000 patch_size: null predictor: euler_maruyama probability_flow: false reduce_mean: false sampling_method: pc save_freq: 10 score_backbone: NCSNv2 sde: simple seed: 1234 sigma: 25.0 sigma_max: 90.0 sigma_min: 0.01 snr: 0.17 upmode: upconv