{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Genotype Differenciation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "\n", "import pandas as pd\n", "\n", "import statsmodels.api as sm\n", "\n", "from matplotlib.figure import Figure\n", "import seaborn as sns\n", "import panel as pn\n", "\n", "import com_const as cc\n", "import com_func as cf\n", "import leaf_patch_gen_diff as lpgd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Setup" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "warnings.simplefilter(action=\"ignore\", category=UserWarning)\n", "warnings.simplefilter(action=\"ignore\", category=FutureWarning)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "pd.set_option(\"display.max_colwidth\", 500)\n", "pd.set_option(\"display.max_columns\", 500)\n", "pd.set_option(\"display.width\", 1000)\n", "pd.set_option(\"display.max_rows\", 20)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "sns.set_style(\"whitegrid\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.2'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {'plotly': 'https://cdn.plot.ly/plotly-2.31.1.min'}, 'shim': {}});\n require([\"plotly\"], function(Plotly) {\n\twindow.Plotly = Plotly\n\ton_load()\n })\n root._bokeh_is_loading = css_urls.length + 1;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } if (((window.Plotly !== undefined) && (!(window.Plotly instanceof HTMLElement))) || window.requirejs) {\n var urls = ['https://cdn.holoviz.org/panel/1.4.4/dist/bundled/plotlyplot/plotly-2.31.1.min.js'];\n for (var i = 0; i < urls.length; i++) {\n skip.push(urls[i])\n }\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.holoviz.org/panel/1.4.4/dist/bundled/jquery/jquery.slim.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/bundled/plotlyplot/plotly-2.31.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.2.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.2.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/bundled/material-components-web@7.0.0/dist/material-components-web.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [\"https://fonts.googleapis.com/css?family=Roboto:300,400,500\", \"https://fonts.googleapis.com/css?family=Material+Icons&display=block\", \"https://cdn.holoviz.org/panel/1.4.4/dist/bundled/font-awesome/css/all.min.css\"];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));", "application/vnd.holoviews_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": "\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n", "application/vnd.holoviews_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ "
\n", "
\n", "
\n", "" ] }, "metadata": { "application/vnd.holoviews_exec.v0+json": { "id": "6bd1b105-ab7b-4c62-a1e4-e950034b645d" } }, "output_type": "display_data" } ], "source": [ "pn.extension(\"ipywidgets\", \"plotly\", design=\"material\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load Data" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
experimentinocgencpmplaquefile_namedpicolrowoivp_oivexp
0Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T0_P049_a_4.png04a99Exp23DM082
1Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T3_P049_a_4.png34a99Exp23DM082
2Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T4_P049_a_4.png44a77Exp23DM082
3Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T5_P049_a_4.png54a33Exp23DM082
4Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T6_P049_a_4.png64a33Exp23DM082
.......................................
565Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T0_P061_c_2.png02c99Exp23DM092
566Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T3_P061_c_2.png32c97Exp23DM092
567Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T4_P061_c_2.png42c77Exp23DM092
568Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T5_P061_c_2.png52c77Exp23DM092
569Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T6_P061_c_2.png62c77Exp23DM092
\n", "

570 rows × 12 columns

\n", "
" ], "text/plain": [ " experiment inoc gen cpm plaque file_name dpi col row oiv p_oiv exp\n", "0 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T0_P049_a_4.png 0 4 a 9 9 Exp23DM082\n", "1 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T3_P049_a_4.png 3 4 a 9 9 Exp23DM082\n", "2 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T4_P049_a_4.png 4 4 a 7 7 Exp23DM082\n", "3 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T5_P049_a_4.png 5 4 a 3 3 Exp23DM082\n", "4 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T6_P049_a_4.png 6 4 a 3 3 Exp23DM082\n", ".. ... ... ... ... ... ... ... ... .. ... ... ...\n", "565 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T0_P061_c_2.png 0 2 c 9 9 Exp23DM092\n", "566 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T3_P061_c_2.png 3 2 c 9 7 Exp23DM092\n", "567 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T4_P061_c_2.png 4 2 c 7 7 Exp23DM092\n", "568 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T5_P061_c_2.png 5 2 c 7 7 Exp23DM092\n", "569 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T6_P061_c_2.png 6 2 c 7 7 Exp23DM092\n", "\n", "[570 rows x 12 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = cf.read_dataframe(\n", " path=cc.path_to_data.joinpath(\"genotype_differenciation_dataset.csv\")\n", ").assign(exp=lambda s: s.experiment + s.inoc.astype(str))\n", "df" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
experimentinocgencpmplaquefile_namedpicolrowoivp_oivexp
4Exp23DM0821272shyb.50025.col.1272s49Exp23DM08_inoc2_T6_P049_a_4.png64a33Exp23DM082
9Exp23DM0821272shyb.50025.col.1272s53Exp23DM08_inoc2_T6_P053_a_1.png61a33Exp23DM082
14Exp23DM0821272shyb.50025.col.1272s55Exp23DM08_inoc2_T6_P055_b_1.png61b11Exp23DM082
19Exp23DM0821272shyb.50025.col.1272s53Exp23DM08_inoc2_T6_P053_b_4.png64b11Exp23DM082
24Exp23DM0821282shyb.50025.col.1282s49Exp23DM08_inoc2_T6_P049_c_2.png62c77Exp23DM082
.......................................
549Exp23DM0921479shyb.50025.col.1479s58Exp23DM09_inoc2_T6_P058_b_2.png62b77Exp23DM092
554Exp23DM0911479shyb.50025.col.1479s59Exp23DM09_inoc1_T6_P059_b_1.png61b77Exp23DM091
559Exp23DM0921479shyb.50025.col.1479s59Exp23DM09_inoc2_T6_P059_b_1.png61b77Exp23DM092
564Exp23DM0911479shyb.50025.col.1479s61Exp23DM09_inoc1_T6_P061_c_2.png62c77Exp23DM091
569Exp23DM0921479shyb.50025.col.1479s61Exp23DM09_inoc2_T6_P061_c_2.png62c77Exp23DM092
\n", "

114 rows × 12 columns

\n", "
" ], "text/plain": [ " experiment inoc gen cpm plaque file_name dpi col row oiv p_oiv exp\n", "4 Exp23DM08 2 1272s hyb.50025.col.1272s 49 Exp23DM08_inoc2_T6_P049_a_4.png 6 4 a 3 3 Exp23DM082\n", "9 Exp23DM08 2 1272s hyb.50025.col.1272s 53 Exp23DM08_inoc2_T6_P053_a_1.png 6 1 a 3 3 Exp23DM082\n", "14 Exp23DM08 2 1272s hyb.50025.col.1272s 55 Exp23DM08_inoc2_T6_P055_b_1.png 6 1 b 1 1 Exp23DM082\n", "19 Exp23DM08 2 1272s hyb.50025.col.1272s 53 Exp23DM08_inoc2_T6_P053_b_4.png 6 4 b 1 1 Exp23DM082\n", "24 Exp23DM08 2 1282s hyb.50025.col.1282s 49 Exp23DM08_inoc2_T6_P049_c_2.png 6 2 c 7 7 Exp23DM082\n", ".. ... ... ... ... ... ... ... ... .. ... ... ...\n", "549 Exp23DM09 2 1479s hyb.50025.col.1479s 58 Exp23DM09_inoc2_T6_P058_b_2.png 6 2 b 7 7 Exp23DM092\n", "554 Exp23DM09 1 1479s hyb.50025.col.1479s 59 Exp23DM09_inoc1_T6_P059_b_1.png 6 1 b 7 7 Exp23DM091\n", "559 Exp23DM09 2 1479s hyb.50025.col.1479s 59 Exp23DM09_inoc2_T6_P059_b_1.png 6 1 b 7 7 Exp23DM092\n", "564 Exp23DM09 1 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc1_T6_P061_c_2.png 6 2 c 7 7 Exp23DM091\n", "569 Exp23DM09 2 1479s hyb.50025.col.1479s 61 Exp23DM09_inoc2_T6_P061_c_2.png 6 2 c 7 7 Exp23DM092\n", "\n", "[114 rows x 12 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_dpi_6 = df[df.dpi == 6]\n", "df_dpi_6" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualizations" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDkAAAGHCAYAAAC6dom2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gdVfnHP2fq7duyLXUTEhISAoFQpAQCImDoTRGpiiJNpQhBaeJPQKR3UFSaFJEi0hQIvZcgJQXSy2Z7u3Xa+f0x997dzW6SDSSEJPN5nvvsvdPumbmzc2a+5/u+r5BSSgICAgICAgICAgICAgICAgI2cpQN3YCAgICAgICAgICAgICAgICAdUEgcgQEBAQEBAQEBAQEBAQEBGwSBCJHQEBAQEBAQEBAQEBAQEDAJkEgcgQEBAQEBAQEBAQEBAQEBGwSBCJHQEBAQEBAQEBAQEBAQEDAJkEgcgQEBAQEBAQEBAQEBAQEBGwSBCJHQEBAQEBAQEBAQEBAQEDAJkEgcgQEBAQEBAQEBAQEBAQEBGwSBCJHQEBAQEBAQEBAwCaMlHJDNyEgICDgayMQOQK+cUyfPp299957lfP33ntvpk+f/jW2KKAnjz76KGPHjmXp0qVrXPb999/nzDPPZLfddmPixIl8+9vf5sILL2TevHl9lu35u//rX/9i7NixPPPMM6vc9l/+8hfGjRvH4sWLB9Tuyy+/nLFjx/aZfu655zJ27Ng+r2effba4zKJFi/jFL37B7rvvzuTJk/nBD37Am2++OaDvLeA4Dt/73ve46aab1mq9gICAgI2d4447jrFjx3L00UevcpmzzjqLsWPHrpP+/e2332bs2LG8/fbb63Wdr4OV27U2fTBAZ2cn5513Hu+99946ac/YsWMH1I+1trZy1VVXsf/++7PNNtuwyy67cMIJJ/D000/3WbbnPmazWSZPnsxPf/rTVW67ubmZCRMmcMMNNwyozZ988gkTJkzg0Ucf7TX9jTfe6Lf/P+WUU4rLWJbF7bffzv7778+kSZPYb7/9uPnmm7Esa0DfXeDee+9d7b1tQEDAukXb0A0ICAjYNLnzzju59tpr2X333fn1r39NZWUlixYt4oEHHuCwww7jiiuu4IADDuh33X333ZfLLruMJ598ku9+97v9LvPYY4+x0047MXz48DW25d133+Wee+7pd97s2bM58MADOe6443pNr6urA6CtrY1jjz2W0tJSfv3rXxOLxfjHP/7Bj370I+6++2522mmnNX5/LpfjvPPO46OPPmLKlClrXD4gICBgU0NRFGbOnMmKFSuoqanpNS+dTjNjxowN1LKNi6lTp/LQQw9RVVU1oOVnzZrFE088wRFHHLGeW9bN7NmzOfnkk9E0jeOPP54JEybQ1dXFCy+8wDnnnMNzzz3H1Vdfja7rfdYNhUIccMAB/POf/6S1tZXy8vI+yzz55JO4rjugfbIsi+nTp+M4Tp95s2bNIhaLcdddd/Wankgkiu//7//+j3/961+cdtppTJw4kY8//phbbrmF5cuXc/nllw/kcPDUU09x5ZVXUl1dPaDlAwICvjqByBEQELDOmTFjBtdccw1nnnkmZ5xxRnH6TjvtxKGHHso555zD9OnT2XLLLRkzZkyf9UOhEAceeCCPPPIIHR0dlJSU9Jr/2WefMXfuXP74xz+usS2pVIoLLriA6upqVqxY0WteLpdjwYIFnHDCCUyaNKnf9R9//HHa2tp45JFHijcou+22G4cccgh33XXXGkWO9957j8suu4yGhoY1tjUgICBgU2X8+PF88cUXPPvss5x44om95s2YMYNwONzr4TKgf8rLy/t98P+mkMlkOO2006isrOTuu+/u9Zvus88+7LXXXpx55pmMHDmSX/7yl/1u48gjj+Shhx7imWee4Yc//GGf+Y899hi77LILQ4cOXWN7rr/+erq6uvqdN2vWLMaOHbvK/r+trY2HH36Yc889l5NPPhmAXXbZBYBrrrmGc889d7W/RUtLCzfccAMPPfQQpaWla2xrQEDAuiMIVwnY6OnPOnnTTTf1Ck2YPn06P/7xj3nooYfYZ5992GabbTj66KNZsGABM2bM4KCDDmLbbbflqKOOYtasWb229Y9//IPDDz+cSZMmsc0223DIIYf0CqN49NFHGT9+PB999BHf//73mThxInvttVefkYGVyWazXHrppeyxxx5svfXW7L///n3WaWxs5Pzzz2eXXXZhu+2249hjj+XDDz8szs/lctxyyy3sv//+TJw4kX333Zc777wTz/OKyxx33HGce+65/PznP2fSpEmcdNJJxXWvuuoq9txzT7beemsOOuigPjZSz/O49dZbmTp1Kttuuy2nnXYaHR0dq90vgJtvvplRo0Zx+umn95mn6zqXXXYZqqrypz/9aZXbOOKII7Btu1fYSIHHHnuMRCLBfvvtt8a2XHXVVQwaNIjDDz+8z7y5c+fiOA5bbbXVKtevrq7mxBNP7DUCo6oqI0aMGFCozKmnnsrgwYP72GQDAgICNicikQh77rlnv9f0p59+mv322w9N6z32NpA+DuDBBx9kv/32Y5tttuHYY49l+fLlfb5j+fLlnH322ey0005su+22nHDCCXz22WdrtQ9777031113HZdffjk77rgjO++8M+eddx7t7e3FZaZPn84JJ5zAJZdcwvbbb8+0adNwXRfP87jzzjv5zne+w9Zbb81+++3Hvffe2+c71rQv/YWrvPzyyxx99NFMmjSJ3XffnYsvvpjOzk7efvttjj/+eACOP/74Xo7F559/nsMPP5yJEyey22678X//93+k0+le3/XOO+/w/e9/n2233Zb99tuPN954Y43H6NFHH2XZsmVccskl/YpW++67L9OmTeNvf/sbqVSq321ss802jBkzhieffLLPvFmzZjFnzhyOPPLINbblgw8+4L777uPiiy/ud/7s2bNX2/8nk0mOPvroPmEmo0aNAmDJkiWr/f7bb7+d1157jZtuuom99tprje0NCAhYdwQiR8A3Fsdx+n19WT788EPuu+8+pk+fzhVXXMG8efP46U9/yhVXXMEpp5zCtddeS319Peeee25xnfvvv5+LL76YffbZhzvuuIOrr74awzA499xze7kCPM/jl7/8JdOmTePOO+9k++2356qrruLVV19dZXsuv/xyXnnlFc4//3zuuusuvv3tb3PVVVfxz3/+E/AdCD/4wQ94++23+dWvfsXNN9+MaZr86Ec/YuHChUgp+dnPfsaf//xnjjrqqGLM6PXXX88ll1zS67ueeeYZotEot912GyeffDJSSk4//XQefPBBTjrpJG677Ta22247zjrrLB5//PHien/84x+55ZZbOPLII7n55pspLS3lmmuuWe1xbm1t5ZNPPmGvvfZCCNHvMqWlpey666688MILq9zOxIkTGTt2bJ+bHMdxeOqppzjooIMwTXO1bXn99dd54oknuOKKK1CUvpe72bNnA76Qtfvuu7P11ltzzDHH8NFHHxWXmTZtWq9zAqCjo4N33323XxfKytx3333cfvvtDBkyZI3LBgQEBGzKTJs2rRiyUiCZTPLKK69w4IEH9lp2oH3cfffdxyWXXMKee+7JrbfeyrbbbstFF13Ua1utra0cffTRfPrpp1x00UVcc801eJ7HD3/4w35zRK2Ov//973zwwQdcccUVnHPOObz88succsopvRJ7vvfee9TX13PLLbdwzjnnoKoql156KTfeeCMHH3xwcV8uv/xybrnllrXal5WZMWMGp5xyChUVFVx//fWce+65PP/885x11llMmDCh+IB/8cUXF4/bk08+yemnn86oUaO45ZZbOOOMM4ohGYX9+PTTT/nRj35EPB7nxhtv5Pjjj+fss89e4/F59dVXKS8vX6U7AuCAAw4gk8msVjQ54ogj+PDDD/sICY8//jilpaV85zvfWW07MpkMF1xwAaecckq/+bgKTs5ly5ZxyCGHsPXWWxcHqArHYNiwYVx66aVFUaPACy+8gK7rxbDWVXH00Ufz3HPPse+++652uYCAgHVPEK4S8I1k2bJlTJgwYZ1uM5VKcf3117PFFlsA/gjFgw8+yN/+9rei/XDRokX84Q9/oLOzk0QiwZIlS/jxj3/MaaedVtzOkCFDOPzww3n//feLOSWklJx22mkcddRRAEyePJn//ve/vPTSS6vMwfDOO++w2267Fbex8847E4lEqKioAHy3wrJly3jssceKIw3bb789hx56KO+++y6LFi3ijTfe4Nprry1uY7fddiMUCnHDDTdw/PHHFx/CdV3nt7/9LYZhAP7D/6uvvsp1113HtGnTAJgyZQqZTIarr76aAw88kHQ6zb333stJJ51UDDmZMmUKjY2NqxVvli1bVjxOq2PEiBG88MIL/YajFDjiiCO44oorWL58OYMHDwbglVdeoaWlZY2jOF1dXfzmN7/h5z//OSNHjux3mYJrJ5PJcM0119De3s6dd97J8ccfz0MPPcS4ceP6rON5HhdddBHJZLJoX10d/d1cBQQEBGyOTJ06lXA43Ctk5b///S8VFRVMnjy517KvvPLKGvu40aNHc+uttzJt2jR+/etfA7D77ruTTCZ58MEHi9u6++67aW9v54EHHij2TXvssQfTpk3jhhtu4MYbbxzwPiiKwl//+lfi8Tjgh4+cfvrpvPrqq+yxxx6AL8ZfdtllxdwjCxYs4OGHH+bss88uJtTcfffdEUJwxx13cMwxx1BaWjqgfVmZm266ia222oqbb765OLBgGAY33HAD2WyW0aNHAzB69GhGjx6NlJKrr76aKVOmcPXVVxe3U1dXx4knnsjLL7/M1KlTueOOO6ioqOC2224r5s4oKyvjrLPOWu3xWbp06Rr7/0IurcL9Qn8ccsghXHPNNTz55JPFezDHcXjyySc56KCDivczq+Kaa64hEolwyimn9AlVhW4n54IFCzjrrLMoKSnhhRde4I9//COdnZ2r3M///ve/PPbYYxx77LGrvHcpULjfDAgI+PoJnBwB30gqKyt55JFH+n1VVlZ+qW2WlJT06nAGDRoEwLbbblucVoiZ7OzsBHzb6bnnnktnZyczZ87kiSee4P777wfok1l7u+22K743DIPy8vI+1s+e7Lzzzjz88MP85Cc/4b777mPJkiWcfvrpTJ06FfArkwwdOrSXlTIcDvPcc89x1FFH8c4776BpGvvvv3+v7R588MGAL6IUGDVqVK8bgjfffBMhBHvuuWcvl8zee+9NU1MTn3/+OTNnzsS27T4Wy1UlAi1QGAHpL6FYT1RV7bV8fxx88MFomsa///3v4rTHH3+c8ePHM378+NVu//LLL6empqZP7HdPjj32WP785z9z1VVXsfPOO7Pffvvx17/+lXA4zO23395nedu2+dWvfsVzzz3Hb37zG7bZZhsAXNftdRxd111t2wICAgI2R0KhEHvvvXevkJWnnnqK7373u32cfwPp4+bPn09LS8sa+6k333yTrbbaiurq6uJ1WlEU9thjjwGFYPRk7733Lgochc+apvHuu+8Wp5WWlvZKrvrWW28hpWTvvffu0+fmcjnef//9Ae9LT7LZLJ999hn77LNPr+M3bdo0nnvuueJ9Tk/mz5/PihUr+rRlxx13JBaL8frrrwP+PciUKVN69eX77rtvse9eFVLKPmFHKzOQ/r+8vJy99tqrl5vz1VdfHdAgx9tvv81DDz3EFVdcscq21NXVceedd/LAAw+w//77s8suu3DhhRdy5JFHctddd/Wbx+M///kPZ599NpMnT+ZXv/pVcR/WleM4ICBg3RE4OQK+kRiGwcSJE1c578sQi8X6nR6JRFa5zuLFi7n44ot588030XWdUaNGFUf3V+6cQ6FQr8+Koqy2A//Nb35DTU0N//rXv/jd737H7373O7bbbjsuvfRSxo0bR3t7e9HV0R8dHR2UlZX1ueEoiEA9O+hoNNprmfb2dqSUbL/99v1uu7GxsSj0lJWV9bv9VVEYwVndCA34sazRaHS1ybjKysrYe++9efLJJ/npT39KR0cHM2bMWGOJwRkzZvDUU0/xz3/+E8/zii+geHOrKAqjRo3qY0NNJBJsv/32xVCWAp2dnZxxxhm8++67XHTRRb2SoZ144om9RKWddtqp31jrgICAgM2d7373u5xxxhmsWLEC0zR58803+01AOZA+rpAjak39VHt7O4sWLVqlQzSTyQy4/StXyFAUhbKysl75qvrrc4FVVhRraGgoJrBcmz63o6MDKeVq7xVWptCW3/72t/z2t7/tM7+xsbG47ZXbomlan2krM2TIkD65zVamkE+k4NBcFUcccQSnnHIKn376KRMmTODxxx9n4sSJ/bosCxSSjf/kJz9h9OjROI5T7P89z8NxHDRNIx6Ps+eee/ZZf+rUqfzjH/9g3rx5vUJu/va3v/GHP/yBnXbaiVtuuaUYLvvYY49xwQUX9NrGCy+8MKCkqAEBAeuPQOQI2CRYeeR8dQ6KgeJ5Hj/96U/RdZ1HHnmErbbaCk3T+OKLL3jiiSe+8vYNw+DUU0/l1FNPZfny5cyYMYNbb72Vc845h6eeeop4PN4rsViBDz74gJKSEkpKSmhra8N13V43gYUblNXdiMTjcSKRyCrLqo4YMYL//e9/gJ8dvKcQ0DPBWn9UVFQwadIknnvuOX7xi1/0mwsjmUzy+uuvD6hm/JFHHslPfvIT5s6dy/vvv48QgoMOOmi16zz33HPkcrk+Md4AEyZM4LDDDuPKK6/k6aefJpFIsPvuu/daJpfL9cqYvmLFCk466SSWLl3Ktdde22dk7be//W2vBGor3+AGBAQEBPjsscceRKNRnn32WSKRCEOHDmXrrbfus9xA+rhCP9fS0tJr3ZX7qXg8zk477cR5553Xb5vWZvCkra2t12fXdWlra1ttlY1CAs6777673/5h8ODBxYGFNe1LT2KxGEIIWltbe03P5XK89dZbvZyqK7flvPPO67c6WCEEo7S0lObm5l7zpJRrTD6+99578/LLL/PBBx+sciDl2WefJRQKsdtuu612W1OmTKGqqop///vfDBs2jBdffJHf/OY3q13nk08+YdmyZdxyyy298p2AP7j0m9/8hjlz5vDZZ58xc+ZMjj766F73KdlsFqD4e0op+f3vf8+9997LgQceyBVXXNHrfNlrr7145JFHen3PQMv7BgQErD+CcJWAjZ5YLNanPOcHH3zwlbfb1tbGggULOPLII5k4cWLR8vjKK68A9MnuvjZks1n2228//vKXvwD+Dc4Pf/hDDjjggGIm9R122IElS5bw+eefF9fL5XKceeaZPPLII+y00044jtMnU/2//vUvgD7xzT3ZaaedSKfTSCmZOHFi8TV37lxuueUWHMdhu+22IxQK9dn+jBkz1rh/Z5xxBgsWLODaa6/tM891XS655BKy2eyAclrsvvvu1NTU8J///IdnnnmGfffdd41lBs8444w+YU7f+973AHjkkUeKOUYefPBBLrnkkl6hRw0NDXzwwQfsvPPOgC/InHDCCTQ2NvLXv/61X+vwqFGjeh3Hld0hAQEBAQE+hmGwzz778Nxzz/HMM8+s0t0wkD6urq6O2traNfZTO+20EwsWLGDkyJG9rtVPPPEEjzzyyBpDMHryyiuv9OozXnjhBRzHKeb26o8ddtgB8O8ren5/a2srN9xwA+3t7QPel55Eo1G22mqrPsu88sor/PSnP6WxsbHPvo0aNYqKigqWLl3aqy3V1dVcc801xYozu+yyC6+88kovl8urr76KbdurPT4HH3wwI0aM4OKLL+4jCBX25/HHH+e4445bpcO2gKqqHHbYYTz33HO8+OKLqKra7+BFTyZMmNCn/7/tttuA7nsD8HNy/Pa3v+XNN9/stf7TTz/NkCFDik6Ma6+9tpifrJB8vidlZWW9juPEiRO/tOM4ICBg3RE4OQI2eqZOncpTTz3Ftttuy4gRI3j00UdZtGjRV95uRUUFQ4YM4f7776empoZEIsGrr75adD+sjb11ZUKhEBMmTODmm29G13XGjh3LggULeOyxx4plUQ8//HDuvfdeTj31VH7+859TVlbGPffcg23bHHPMMQwdOpSdd96ZCy+8kIaGBsaNG8c777zDn/70Jw477LBisrH+2HPPPdlxxx057bTTOO2009hiiy343//+x4033siUKVOKIxinnXYa119/PeFwmG9961u8/PLLAxI5pkyZwvTp07nqqquYNWsWRxxxBFVVVSxdupQHHniAWbNm8fvf/361ltMCiqJw6KGH8vjjj7N8+XL++te/rnGdoUOH9rGKvvTSSwC9wqBOO+00TjrpJE477TSOP/54Ojo6ilVkfvSjHwFw4403snDhQs4880w0TWPmzJnF9Q3DWGNukICAgICA3kybNo1TTjkFRVG48MIL+11mjz32GFAfd+6553LOOedw4YUXsv/++zNz5kweeOCBXts68cQTeeKJJzjxxBP50Y9+RFlZGU8//TQPP/xwn1CDNVFfX8+pp57K8ccfT319Pddeey1TpkwpCuP9MXbsWA4++GAuuugili1bxtZbb82CBQu47rrrGDp0KHV1dQghBrQvK/Pzn/+cU089lbPPPptDDz2U5uZmrr32WvbZZx+23HJL5syZA/h9YElJCePGjeOss87i4osvRlVV9tprLzo7O7n11ltpaGgohvScfvrpPP/88/z4xz/m5JNPprW1leuvv36N+bYikQg33XQTp5xyCoceeignnXQS48ePJ5PJ8OKLL/LII4/w7W9/m1/84hcDOt6HH344d9xxB7fddhv777//GoWRWCzWJ9y54IodMmRIcd5+++3Hn//8Z84//3x++ctfFh0jL774IjfeeCOKojBr1iz+9Kc/MXHiRPbff/9eldfAT+a6pvYEBARsGAKRI2Cj54ILLsBxHP7whz+gaRrTpk0r3iR8VW699VZ+//vfM336dAzDYPTo0dx2221cfvnlvPfee71qzq8tl112Gddffz1/+ctfaGpqoqKigiOPPLLY8cdiMe677z6uuuoqfve73+F5HpMmTeKee+5h2LBhANxxxx3ceOON/O1vf6O1tZWhQ4dy9tlnc9JJJ632uxVF4c477+SGG27gjjvuoKWlherqak466SROP/304nKnnHIKkUiEu+++m7vvvpvtttuO888/n0svvXSN+3fSSSex3Xbbcffdd/OHP/yB1tZWKisr2W233fj973+/WhFmZY488kjuuOMOhg0b1q+99svyrW99i7/85S/cdNNNnHXWWSiKwpQpUzj33HOLieX+85//AH4G+5tuuqnX+kOGDOHFF19cZ+0JCAgI2BzYddddSSQS1NbWrrICRaHyyJr6uAMPPBBFUbj11lt54okn2HLLLbnssst6lTutrq7mwQcf5JprruHSSy8ll8tRV1fH73//+zUmsVyZAw44gEQiwS9/+UsikQiHHXbYGiuOAFxxxRXccccdPPjgg6xYsYKKigqmTZvGL3/5y6LbYiD7sjJ77bUXt99+OzfffDOnn3465eXlHHTQQZx55pkAjBkzhgMPPJD777+fV199lX//+98cddRRRKNR/vznP/PQQw8RiUTYfvvtufrqq4v3F3V1ddx3331ceeWVnHXWWVRUVHD++edz5ZVXrnFfx44dy6OPPsp9993HI488wtKlSwmFQowbN46rrrpqle6d/qirq2PHHXfk3Xff5fe///2A11sT4XCYv/71r1x33XXceOONtLW1MWbMGG6++Wb22WcfwO//pZR8/PHHfP/73++zjXvuuWe14lZAQMCGQ8jVZUYMCAgICAgICAgICGDvvfdmp512GtCDfkBAQEDAhiPIyREQEBAQEBAQEBAQEBAQELBJEIgcAQEBAQEBAQEBAQEBAQEBmwRBuEpAQEBAQEBAQEBAQEBAQMAmQeDkCAgICAgICAgICAgICAgI2CQIRI6AgICAgICAgICAgICAgIBNgkDkCAgICAgICAgICAgICAgI2CTQNnQDviye5+E4DoqiIITY0M0JCAgICAhASonneWiahqIE4whflaCvDwgICAj4phH09d98NlqRw3EcPv744w3djICAgICAgD5MnDgRwzA2dDM2eoK+PiAgICDgm0rQ139z2WhFjoJqNnHiRFRV/Urbcl2Xjz/+eJ1sa2Mk2P9g/4P9D/Z/c91/WLfHoLCtYGRn3bAu+3oIzvdg/4P9D/Y/2P9g/4O+fnNgoxU5CrZVVVXX2T/qutzWxkiw/8H+B/sf7P/mzLo8BkFoxbphffT162N7GxvB/gf7H+x/sP+bK0Ffv3kQyE8BAQEBAQEBAQEBAQEBAQGbBIHIERAQEBAQEBAQEBAQEBAQsEkQiBx5amtrN3QTAgI2GBUVFRu6CQEBAQEBAQHrmbKysg3dhICAgID1zkabk2Ntcd0Mqhrud56qqgwePHgN66dR1cj6aFpAwHpnTed/XV3dGtYPzv+AgICNFDuN56kopomqqkyePLk4y8vlUBQX9OD6FrDpkso5qIpgXlOSDi9GpiHJFpUxXE8SNTebR4GAgK8VKSWO4+C67oZuyiaDqqpomjagXCib0ZVNZXn9I8ye/Zu1XnPcuMuprjpoPbQpIODrIjj/AwICNkPsDLx+I8rU6cyetB3ScYqzhKYxbuaH8NKVsNsvQO9fCA4I2FjJWC6NXVluf3keT8xcTtrqftiKGCqHTBrMz/bcgqp4iLCx+SaiDAhY11iWRX19Pel0ekM3ZZMjEolQW1u7xtK9m43IoaoGNdUHMX/+9eRy9QNezzRrqak+EEUJaiAHbLwE539AQMDmRiabQVVUjKnTAXyBo4fIIQtvpk7HsizcbIZwKBA6AjYNsrbL3W8s5MpnZ/c7P225PPDOEh54ZwnT9x/HibvVEdIDoSMg4KvieR4LFiwoRgoYhhFUYVkHSCmxLIumpiYWLFjAmDFjVlvCd4OKHC0tLfz2t7/ljTfeoKysjFNPPZXDDz98vX2f9FxG1p3J7Dm/HvA6I+t+jvTcIHtJwEZPcP4HBARsCL7uvh4A2xc4Fi9ejCUtxo4ay9B/PkLmhRfIfjiT0HaTCO+zD47jMHfBXEzFZNiwYb7zI3B0BGzkZCyXv72xgD88O2dAy1/57GwQcMIuIwgbm834Z0DAesGyLDzPY9iwYUQiQSjkuiQcDqPrOosWLcKyLEKh0CqX3WBXMiklp59+Op7ncc8999DQ0MD5559PLBZj3333XfdfaKdR3/srtTufzIKFNw1oNNs0a6mtPQTl7T/DDicFMbsBGy/B+R8QELAB+Nr7egA7Da/fiDF1Opa0ePj+h9E0jZEjRzJ2++0ZfsABLK6vZ86777Lg4YdxHIfvHfs93/r60pWw28+D613ARk1jV3bAAkeBK5+ZzXe3rmFERSByBASsC1bnMgj48gz0uG6wK9knn3zChx9+yPPPP8+wYcMYP348J598Mnfdddd6ufHxPBVll9PxnNyAR7NH1v0cz8NfL5cLBrMDNloK5790rbU6/6UUEJz/AQEBX5Kvu6+H/PUuH6Ky5cgtMQwDx3GYN28e8+bN67O8aZqMHTnW/zB1enC9C9ioSeUcbn+573k+EO54eT4XHrAVkSAZaUBAwEbOBruKLVmyhPLyct8emmfs2LHccMMN2LaNruvr9PsU06TloX8Q3ncaNTWHrnE02zRrqak5iLefuYOuxfPRykppX7EQ2R3Fu+kgwfU8FryswOYYMraJ779AUFY7ksynn1Ayakt2Of7CAZ7/h9B09fW0P/QQ4z54/2tscUBAwKbC193XA0jNK77XNI1f/3rgIXr++kEm/ICNEyklihA8MXP5l1r/8ZnLuPig8eu4VQEBAQFfPxtM5Bg0aBBdXV1kMhnCYT/+dcWKFTiOQ1dXF+Xl5QPazsDL8giiB0yjq6WVTMalbsQZzJm76koTdSN+Rn39I2QiN6CN86eVVg/wqwICvmFIXiVUBTk+oL5+HHUjTmHO3EtXuXzdiDPoXNGIdthhDDvsUADsZA7peKtcZ2PFdV2UrMRqz6Cqm1/SNU96bFk3Grsziys2z/Fr13XBkeukzFtQKq43X39fD6CybNEDzJl/6Vq3d+yo31Iz9HCuvvJInNIYlJWhllUQNRNE1RhRLUpMixJTo0TVKIaycSWUcz2XpcsWYhgCVdn8rncbcv+llFguZB2PnCvJOf4r68iVPnfPz+an5dyey3l9p+dfu46u5Gd7jupVRWVtSFsu85uSjK2OreO9/2ZQuI5srtfpYP/X3f5vrsdwY2KDiRzbbrstVVVV/O53v+PCCy+kqamJv/71rwDYtj3g7Xz88cdrXKa2tpbBgwezcM6nPHH1/7Hdfgeyx3EnsHDRzf2OZvuj2Ifx+qs/JtVejRAKQoD0vsk+jnXfso3nti1gTQhFQUqQ0mPe50+x25S7WLjojlWe/7W1h9H11BJSry8lXaFjb6WS9DJ05JJ4BrAR3dQPBA344rVPN3QzNgiDtx5B2ZBBtC1rZvknizZ0czYYakIMqD8JWDu+zr6+wOTJk6mpPogFS29Z62pSVTUH0dDQzP73z0XNt88DOqLQFoe2mGB5zP/bFoeOqCAZ0UhHVBzTwJA6pqf5L1cj5OkYnp5/r2F4OoanYXo6CirdPW3Pa6pAAhIB60l4XPThG+tluxsLK++/lOCg4KBgSxUHFRsFR6rYK73vtYxU8tP89/56Kk5xur9sYZn1TdRUSeacNS+4GjrSFosWLaKtrW0dteqbx+Z+rQ/2f/Pe/82FDSZymKbJ9ddfzy9/+UsmT55MRUUFJ598MldccQWx2MAV5IkTJw5o9NV1PYaMncBxV96Cqgmam5sZPuxUPv/i4j7LDh9+Gq0tHUzc8mpcVxIvL0czQjQv6yLZlsXKeriWg217uLbEsV0818N1wHM9XwxxJZ6Xf7ndL9fxcB0Pz+l+778knu3huv57197wI+ZCEaiaQNUUVE1B6fG+3+l6fp4qUHUFZVXLrbSNnsspqvjaR8Vc1+OLL75g9OjRqOqmN5JthjXKamKk5s4lqykIM0RLS/sqz/8Rw0+lubmZkkmVJN+oh1ZJ8nXf+loCiLCKXhNBq4miV0fQKiMIfeM9bq7X4/ff3JJEqQKjKkrznz5m0E8mEg1FwP3mSrnrC6s9y/yWRQPuT1aH67rBDVQPvu6+vkDHk09St+Mpa+XmGD78NGb+72OeeupZlEMPprythcqGJqqamqlobqEs5dA9oNDz/8Qf0XOUNO1RaItBW1zQFoPWvBiyrPA+BskwIASGVImgE8EggkG4x/uIMIhg5qcbRESIkAgTwSAkTBRFA6EghYIvkCi++CzwPwsFKboFFJmfL6WkqamZQVVVKIqa3wvhz0MU33+ThGwpwfbA8gSWB7YnyLndny03/9cTK71feRl/Wjrn4Kl68bOdX0Z+jUM7mpAYKhiK9F/F92Co+b/5eXr+pSFRFYmGh5ZfVhcSU5WENEFIhdHDopRHhn+ltpVEDEZUj2DEiBHraG+/ORSuz+viWr8xEuz/utv/oK//5rNBMwtts802vPjiizQ1NVFWVsbrr79OWVkZ0Wh0wNtQVXXAJ2r7U08T3Xcaaljj6Wee5oADDmPxktt6jfSYZi011Yfy1FPPMe2738XNuKSeepqK7x9FzchSGOlbDruFCy8vXvjvXdfDyXk4luuLGZ7vAPFczx9Jz99SKEIgFIGiChSlx/v8Q76UEun5YofbjyDiOh6u7fnfaa88f6V17Hwb7VXMdzzsnANS4PV4wJGexLEkjvX1Ci4FAUQpiCF6t3DSv0CioOoCVe0htKwkqPQSYorL5beh+Dc2qqpskpmQ3fxvuuToH1D6/e9R9otfrvb8r609mBdnTGe3Xa9CK/2Q5CufUHHKeaQ/WY5Mgsy4WAu6sBZ0+SsJ0CpM9Jooem0MrTqKWrJxWbgBVGXT/P1XhxLTSX/QiLW4i/SHjYTGluF1DXx0fVOhIG6tTX8SMHC+7r4eoPXPdzPyoEdYuKx/x9rKmGYttVWH8NotvyNcVkYmk6F5UDXNg6qZBQjpMchpY3B6ObUdK6hsaUJN2lgZFTejIDMKmicY1AWDuoD6/sQQH0uF9hi0xhza4hZtsRRtMUFrDFrjsCQvkGR6uuZk702FHS0viOg9hBKdiNT7n54XUUw0YukOQp0pFJEXRvLOEf+90uO9AKEWp6MIpFDzYoACioIHOFIhJ1UsT8mLCgo5VyEnFSyp+AKDFMX5OU+QcxVs6b8vChBFQQJynvCFDXd9CBCrv/XtLUCsJDrkp5s9p/cz35+eX7bntPwySuFnleB5Eld6OJ7Ek+B6Eik9Cu4eRRWoCDRFoGkCQ1UwVc2/LxICVRVoioKqQCjsMLSmhIihfqmQlYihMqoytslfBzf3a32w/5vP/i9ZsoSLLrqIDz/8kOHDh3PooYdy//338+KLL/Lee+9x+eWX88UXXzBixAjOOOMM9ttvPwCmT59OSUkJDQ0NzJgxg9LSUs466ywOPfTQDbtDa8EGEzna29s59dRTufXWW6msrATgpZdeYqeddlov3+flclR8/yhcy0UKyaeffsrQobV9RrOHDz+Njz76H5999hkHHXgQWlQn8v2j/GzrpgmAEAWHA7Aa+6HMuzjcvBDSSxSxPRy7WwxxHYljuXiuL274CISS7+B0Bd1UfRFEEevU8eB5HnPmzGXs2C0RiD4iiLcK4cTtIZx4/Qgnru3ve09xpbeDpVus6Yk/DwqjY18HQsBsfeZKQshKQkof8aRbOFFWEk5WvUwPZ8vX5FrxHImbzTHug/fXeP6PGH4q9SseR1WfZfHiSsqO+xmjp/8cr7OJ6Ozv0zLmOCxtMlraQ6RAdoC0FJzmHE5zjswnrf7xNBX06hB6bQy9No5WFUExNo8OZaNBFagRna4XFwPQ9cJiottV4aWdzdLNEbB++Lr7evD7+9HPPYu7ltWkFE3nmCuvxEol+dcjf6ajM00qY5PMeViuQpNeQVNJBR+VTIThEBVZqpQ2hogVjJBLqUqvwEjmcDIqTkbBzv91smpxmptTMVyo6vBf/TtDfCxd0BlTaI/7LpDmmKQpLn2nSMymNWbTGIOc0aMfWUOXIqTAKNcxCWF4IXRponkhFC+E6oXACyNc/690Q3hOCMeN4DgRbM/A8lQsqZDz8qKGVL5+B4TidTsgFIlZdEN0CwlmP2KDofrrpzrbqa4oxdQEhqJgaHnRQpHoKqjrcHe8fGJzT0pcV2I7kO0xcCQQKCqowhcxdFXF1ASaqqDlRQxNFaiKgqaINRps7FyadFcbh0wazAPvLFnr9h46aQieF1z/AwI2BRzH4ZRTTmH06NH885//ZNasWVx88cWUlZXR1NTEKaecwllnncWUKVOYOXMm06dPp6Kigh122AGA+++/n1/84hecc8453HPPPVxyySV8+9vfJh6Pb+A9GxgbTOQoLS0lnU7zxz/+kVNPPZW33nqLf/7zn9x3333r5fsUxYU3b0HZ6VQWzFuI4zi8+eY7nHrqT4qj2aZZS23NYTz+2J+wbZslCxZRt8VIf70dTlrr7xSKQFV8gWJ1eF63+NFTDHEdieN4uJaLY/tCgm15RfHEvynyezwh6HaCKL47pPB+bR6khSLQDBXNWOvd/dKsS9eK12P5boGl9zqFZXq5ViQ4lrfRu1ZWDhEqbDMa9dCb5qLVTmDR/FWf/zU1h/Pww7+mphaW19/L4sVLyaw4hrq6ERiZL6hdfAlWdDTttceRqtoJFNA9gZ71EJ0uXrvE6RTInIe1OI21OA00+m6PUh2tOow+OIFeG0MtNTc6t8emhBLRSH3QiNthAeB2WKQ2YzdHwPrh6+7rARAuvPQH1Knnr0U1tUNQVcNf71unU1tZQ2W5g+3Y2K5NOp0mmcqSStskMy5pR5KSIRa4tSygltfYDj3kkYg7lKlJqtQ2qkQjMa+LmNtJmdNFxOlCuC5uVsXOKHnhIy+E5N9bGQ07q4IFhi0Z1OYyaA2pEdKGTlvEpC2q0xrVaI2qtMYFLTGPtoRLW9yiPZHDNXyROycsclhA51odVumpSC+CdMPghlHcMKYbLk4TXgjNC6N5Jro0MQhhShNTmoQU4YsTwsNUPAzFwxRuj2kuhuJiih6fhZtfJv9XuGii+76n+xaoe2Co2NbC54IjBUAIPClpFe2UU45wVaQLOANzrUgBxbCgvPvFFzF8XdhD+IM/PXKpCEWgCgWhKhiqiq4KDN1AU1U0pVu80PL3i+tCL0o3LeSnu4/7UiLHKXuOCsrHBgRsIrz11lvU19fz8MMPE4vFGD16NHPnzuWpp57i/vvvZ9ddd+XYY48FYMSIEcyaNYu77767KHKMHTuWn/zkJwD84he/4J577uHzzz9n++2332D7tDZs0CvZddddxyWXXMJBBx3E0KFDueGGG9hmm23Wz5fpEbzJPyHbmkKqcMIxxzGsbjhuNsvIEWcwe+5vGDniTLysw2k/O5UlCxfjqZBtTWFO/gmKvv6e+hVFoCgqrKGSXlEMcfo6RBzLwbE9XMvD9WQPMaTw0J4XQxSKAoiiCER+yELKDafcC+G3Q1GVNR2CdYr0fLHDtl0+n/MFI4bXgUcf4eTLuFb6y7myIV0rU743hjGTt8QZwPn//aOu4pNPRtLSfgOaPoNXP2uiOXsmtZX7MrjlFYzUF1R9cQlWbCxdw44nHdmetKJAREEbKtAN0HMC0eHgtrnYreBlBE6bjdNmk53t31gLQ6BX+mEu2uAEek0UJbi5+npYycVRIHBzBKwPvta+HnBVE3vnM3G6OrFda83V1OrOoKurA10No+18JkI1McIJMskUOREig0taj5GOuGQMFycGOA5OLofMZRF2DtWzsKVCi2XQQjlfUI7LGDpliDYZocmL0kKYuExRozcz2GhmeGkjI0QDw0Ujw0UD5aK92CbPEd3iR9Z3hWTTBp2ZCNmMjswItIyD7rpELJuIZTOkfVV76NNpRGgPR2mPhOmImnRGdTpjKp0xhY64pD3u0RFzcfQcnpLFUXLYwn9JIRGKi1C6QOta7fd4QC7/KixpoBXzi0SF6ecZwSQiDBRMDAxUYaJjEM5PLyyvCLP7t139LnYjPYrihyy0yh9QkfkwHZlvrZD4Ix3YIL383ZIsDsB40sXLh5V4EiQeoPgZTARoQmAoeTeGqqJpCip+KKyK7+JU8N/jCvAKwosARfFvzEReZMkLKkWxReQFE0FeOOmxrujx6iHodDUuZsjgLTl/vy35w3NzB3rEmP7dsVTFzTUvGBAQsFEwZ84cRo4c2Sv/1aRJk3jqqaeYP38+M2bMYLvttivOs22bkSNHFj/X1dUV3xe24ThfLbHx18kGfaIYNWoU995779f2fULRsBY2UhmK4czuoPHh9xGqoOacQ6lf8U9qqg6h8ZqPkK6kZGw52rgScq0dhLYb/LW1cXUMWAwphMS4KztEPGzLxbHyzghP4mU9HMfFTnsk27L+9pFFAcQXRJRenzcVCq4VRRPoYYV4eWi952To5VrplSdl5Rwq6861UloTYeLUobiWS3Jux4DO/+Fj9yc6QmNx8hqGDPmETz+/mYaK3Vla/S3qVrxHVcvzGMk5VMz6DfH4BJLDj8dKbIvjQCYtSUuJWqJiVGqEIwLVBbo8nGYHu9nDbgNpgbUsi7UsC++3AKCWqH6YS00UfXApankYsb7POVWwxbZbgiXWR5GiDYKUEmm5eEkbN2nn/1p4+ffRb9ViLewsujgKuB0WqfcaEIZK6q16lLiOEtVRYwZKTEeN6SgxA2Eom5QLR+gKW0wcu6Gbscnydff1uqoy77NP6GhpoqSqhrqtD119NbXqA3jr7Wk4WQtdqaa8Zmve7NR4eb5BU3oQTZlBZJzVJ0lV8RgkklQrSaqVLiqVJIbwKBNpykSaUUozrhQ0yygNXglveEN5wo1hoaHiOxvKRRd1SgN1ooHhaiND440MiTdTSxOVtKGQYgi9bR2uLfKhMRrJbJRUNkIua+BkVchIRNpFSdkorkfCSpOw0gzvWPV+SEBGQ3ixEF4sghcrwYuFyMUMMjGNZFyhM67QHvFIKw4pLFJYpLFI45DGLr5S2GRxkICFg4VDO+ne19kBXHNDxdwiJhFh5hOzFoQSozgtjElU5P9iYKL71ynh/0IAUnh4ioGnhgAFT+bvhfB1XSllMXeaQCDyoSSK8M8rXfXzYijknbqFlxAIIfNiCfm/+ZefkK33Z/IDHk5hmtfjWHjdy4nV9EuC7mUoCCCAEDS8Xs9xe5yIIuCP//l8jcf43O+M4YeTB6OkkmCUrvlHCQgI+MajqmqfQezCZ8dxOOigg/jZz37Wa76mdUsDut73gXNDDoqvLZvNsKl0PNIzG0k+trDPvPSHjUza/m+kP2jEzdu00x82woeNAOiKRmTbKoS2cSQlVFQFRV39jytld+UX23JoSmpUjUgAAs8p5AvxcG037xTx8pVj8hvIW0b7S5xa+BzQlw3lWrEzNtas1rU6/8MfbkPlsGNoGvt3hg3/mEWLBCl3a+TInVlaPZW6hpcpb/kvRtenlH96PlZiG7qGH49Wsg1IietCLueRTfuCkm5CaKROZCsFTZV4XfiCR7OD0+LhpgRuh4vbkSI7NwU0IjTQKg306jB6TQx9SClKeN0eOTVqYIQ13IyDTH7zwzSklMicmxcvrN5CRsrC67LxUjZyFRWa1BKD8IQKGq57v9/5XS8tofqsyXT+ZyHWkv5HbIWuoMR0X/iIGihxHTXqCyBqfrow1Y1GCNHKQ4Tipm9dD1LHbPTMru9ErdmCwVW1vP/Yg4wYP566YWcw54u+bo66EaeyYsW/yeWWgwBXNrO8/lMmxGHCtt3LZa0ordkKWrIVdOYqSOYqSNrlpHNl5JyYnytCSAw1QkiL4ikenp1Gs1MIO4tnW6hIqvNCCKwAIKpBmeFRonskNA/NELiKii2qcUU1C6XHAukh8Ii6KWJOkpjTSdTtIup0EtE7CBudmIkcMXJAa599lBKyTohkLkHaipJKaTh2CDej4KVBpBy0VBYtlUV4EpHKoqSy0NBe3EYEKOu5TSHyQkgYLx5GxkJ4sTheLISMRfBiEdxoCDekkRU2aWGRFllS0iItLFKihzginPx0m7QsiCQOubxvI4tNFptWUqtLYdIHBUGoULlGGoQwCEkdxYASK040L5pEhUFUMUgoYeKKSYkWIiw0VFVFEXSHkqyRHlVpvtZLX09xxb/uO46DonqcMnUMp0wdM6CtdCXbmT/jv2yx+y4YFTXkE88FBARspIwZM4aFCxeSTCaLToxPP/0UgJEjR/Lhhx/2qqL0l7/8Bcuy+ggfGyubzRVMepLoDjVEd6jpd77rZonvPJz4zv2X3vIs9+vts9YzIp+RW1VBUUEPK0RLzT7ZhtdYScbKJ0+1C8lTvT6VZAR9BZCelWQCvg4EsR1qiK3l+T+U3Vm0qI4v5l3OiBH/Y+FCwedLJjJ2RI7Z4X2IVe/P8BXPUNb6H4zO/1HxybnkSrYjOfx4SExA1fzf13Mlji3pyEoEHrouMMMCY6hKbJSKqgm8rMRu8bCbXexmD6fVQzoCu97CrreADmAZatwPc9FqIuiDE2iVCcSXLf2rCtSoXiyh6mQ2bJiGlBKZdYuui4J44SWtXkKGP/q3ZkRI9UWHaLcTI7J9NemZTX1cHAXcDov0R02UHzPOF75WaoPMuUjbw23L4bblWKUspClFwaMogOSdIX5bDEToGyCEqAKtNETznz6m8qfrL4Qi4OvDlZJpN7/FodsN4fKTf07u0zZqJxzKwiU3960mVXUEmY/b2b78SZb/92Wk0YYTacYON2JFmrDDjbhmJyEjxWAjxeDE4r5f6GngluA5pbhWCa4Tx7ET4JQh3FIUtRQpIWflSKazdOVskjmXnAspB1KOwlL8a1hIhTJDUKp7lGgeIc1DquCpCrYeoUUvp0lKPFx/RE34yUTDXo6Y20XUyYsfTgcRp4Ow00nISxPWs4T1rN/e8pWaj0JaS5BSE6SdOOlshGzWxM6ouBmBkrLQklm0VAYtmUVN5xBSonZlULsysJriNVJVfDEkHvYFkVi4hzhSgoyF8aJhMA3IHwN/tyQuLimRywshFilypPOffQeJXfybyTtHMnk3iYPEQ5ImR5pct+gggHA/DfUomiuwQEMhJkyiiklUmP77/Ofu9wYxESIqjOKyMWGiia9bKe0prijFv5FwCTvetyOOt2Z7uaZovHvsuyz/4nXCnYsYMmk8emUNhMtAj4AR8f8qgQocELCxsMsuu1BbW8tFF13EGWecweeff84999xDSUkJxxxzDPfeey/XXXcdhx12GB9//DHXXnstl19++YZu9jpjsxE5VlfZwXVdGhpaqa6uXmVJoc21MsRXqySTF0PWopJMz7K666OSzOZKe3MGmjNEEgaO7fHo1R+Q6+FaMGN6n88H/2JbFn20lFf//hLl46sZ8q0G6uo+YsEChU++mMjEMUuxEtXMNg8jUXMAw1b8m0TrfzE7PsT8+ENypTuQHH48dnwciiowVIFBvjSxDclODzo9VE1gmgIzrKBXKkQH+6EQ0pM4HRKnxfMdHy0ubhe4XRK3Kwvzs0ArqKBX9AhzqU2gJFZvLS+gRLSvrYSqlBKZcfqEjxQdGSn//UBFFhHW8gJGdxhJz5ASNaojVk56rAr0QWFa/z5rtdvuenExNefugDDUPu2Rtoeb6i28FN+nbNwuC5l1wfFw23O47asRQlTRu+0FASRuFPdLhLX1+v/f8xxIfdhIdLuNx7UX0D9bVMYI6SpvzmtBKCqdzy7Cy+WoG3Y6c764sLjcyGFnkP6ggeSMFVSctT0P3HM/Jcs+JaHFiesVxPXRlMVqKI+VYURySLMVO9yIHWnCCjdiRxqxQy2gOKC0oOgtKOG+EaWeE8NzStCdUqJOKVV2KdIpJZeJ0JWEZM4mablkXMi6UJ+R1GcEoKIrKglNoUSHEg3iiofQwFNAKuAq4OKSEwZZLUKjVgW4/nMvKooQ6NIh5iSJup2EnQ70TAslIp0XQbpQ8Ig57cScdr/Bev6VT6CfVaOktRIyaoKUVklaSZC2wuQyOjLtoaZyqMm8AJLKoXdlUFNZtIyFcD3UjjRqR3q1v5nUVdxY2Bc94iHcWBg3FkKPhYhHw9ixEG4kjjRUP4wkH56h4g+kqIqCJvzqIwpg45BRc744Iv2/SZEjSY62XBLHEL5AIn1xJCULLwcPiYNHu8zQ7mbW+vwz0XqJI7G8IBIVIWLC6C2UCJOYUnhv+GV91yGO5+DIAcTQ5wWeT0uqkW0dKJ/NZ/A4Cy283J+hGqCZYCYgkhc+9HAgfAQEfINRFIWbbrqJiy66iEMOOYRRo0Zx+OGH88orrzBkyBBuv/12rr76au666y6qq6uZPn06Bx988IZu9jpjsxE51kR9fT3V1dUbuhkbLeu9kkwx7nTdVZLZHEl3WkQSBoefuz3/vOp9snlhI9PZPaofiukcfPZEXmx+jpnPzmSo/h2aPkoihMfgnZsYOfJD5s8XvD97W7YfXY8ZzpFUK/hsxDGUVR/I0IZ/EW35L2b7e5jt75Et25nk8ONxYr5lthC6opsCpMzn8fBIJT1U1U9cGo4o6IZAKxHoZRrh0X7bvFze7dHi+eJHi4e0wW50sRtT8LEf5qJEQK/U0Wv8MBetKoEwQ70PxjosoSo9iZdx+roueogXXtL2U/EPACWi9XI89BQvCmLAl3kQX7miyqpYXaUVoStopSaUrjpBnXQKQkg/xyMvhhSOs9thrb49iugt3vQj7CiRLymErHwOPL+I6HZVa7+dgG8Uric5ZNJgtqlNkPrQP9+TM1ZQe85hLFxyS49qUofSeP9H+fO9iQlH/YRPFjWyi7mYWTOeY0XjfGRn9/9svKyS2tqxDCqfSKQjhp7T0LICIbrwjBbscBN2pBEr0pgXQxrxtCyKlkTRksCyXu0MAQnPQLplSKcU146TSUXoSobp6IrQloxgewotlkdL/l9EERDXFRKaQkIRxFSJho6mgJd/wveEnxzTxcHFw0EnhQmiDAyJRY5IOIyKghCSqJsi4rb77g+3g0gPJ4guLUJuipCbApb3OdZORCedKCGtJXwhRCshrQ2jXUuQkRGUtI2SzKAlM6hdWdRUFjWZ9Z0hST9ERs3ZCNtFa0tCW3K1v61n6sh4COIRZDwMCf8lExH/bzwM8TCGphFFA6L5VBjdFVk6rU4SoRL/miF75ryQSOmRlRZJYZEkmw+ryZEUOVIy7yCRVrcwkv+bljZp6ecfyeGQ8xw/vGYtiQjDD58RJjEl1P2+j4uk+31MmISFvtproCIUFPr2GR4enuwObXyscQzVgz9iQVM7wogxeNsxqNEIODn/lWqEzvx5rBqghyBU4r/0aA/hIxCKAwI2NC0tLSxfvpy///3vxWl//vOfqary73N23XVXHn300X7XvfLKK/tMmzNnzvpp6HoiEDkCvlbWdSUZby0ryRTCZTZnMaQgdBxx3uReQgf4AscR503GIssfP7yK7OQMJ/9zHINlDctn2ghFUrtjM6NGfcC8eQpvz57ITmM60KI5cAfRJkpI1p1ARe0hVC1/jEjrC4Ta3ibU9jbZ8l1JDj8OJ7pFd2OEQNNB0/3fw3UltiXJZf2RSF0XhCICw1QwDFBMgTlYxRycTyInJW6nzDs9/JfbIfHSkFtkk1tkA52gLEMvE2hVJnp1BL02jj68ckAlVKUn8dJ2L9dFwbXQU8ig/xQYfVAiWq/cFT3fFx7gv3T4zepYRUWVVfFVRB+hKWglJpSsRghxvV4CUN8cI5b/3Z7E67TwOi1Y1UODQr8JUnuJIRGtT66gVZXRDdwcGzdRU+P0vUZTGTZozeeecTss0h80FN0cBRdH4bfPvrSEw8+azK6jy+mam2HLKVNxcjnali2hdeliuhob6Wproqutibm8RrS8gvJhwykbMRwjHEFxEui5CvTc1oQbdRI5DS2roro53FCzL4CECwKIL4Y4oTaEYiGUBtAbUMNgJKAEGApIqeDacaxcjHQ6RjIVI52JkcnGWZaJscTTEUDMUCgxFBKqJCHBLASLCh2EgpN/lvfwnauuo+HmdBwkEo8MCQQJUP2y5iIkKBRJNcgS9dqJuh1EnPzf/CvkJtGkTcJuJmE39/kdPAQZNU5KLyE1KEG6Ok5KKyGlVZHWSvAUE5AojoOeyqGnsqjJHGoqUxRC1KT/Xu3KoNguSs6GnA3Nq6/wIiNmUQQpCB8y4TtFFOGCqvpiST//5yF0QlJnENEeIkj+vkKKXoIJxdygHh4eaSy6RJYUuXwoje8eSRVDbCzS0iaJTdpzfJHEs8nm84+kpUVaWjSRXKuiawqCSI+wmRIlwt2c7s8TCi8c8iyDSmr7rNfcUc+3n9i/+HlJJsJbnUOYUrICfXk9iiqo2Xq0L3RoJpDI77sE1wInC10roD1frlYzQQtBqBRCCTDywocWDoSPgIANwKmnnsqvf/1r9txzTxYtWsTdd9+9yeTcWBOByBHwjWRtK8n0DZXpp5JMzs8X4nl+0tRCmTgE2FmPXNpB0/xyb5taJZmV6U/oKAgcmq6Q7VD49qB9earxCe7+Tgt//Fs9oYTG/A8qEYqgZnITW2zxHl98IXj104nsNt5Fj6zACOfw7ApWEKdzi5MpH3IEFUsfJtw2g1DrG4Ra3yBbMcUXOyJ1fdqlqgI1nP9lXInjSLra/Uz0miYwQoJQWEE3fGFECN/toZUohPPaiWdJnNa86JEXP6QlsFvAbsmRmZVDLUlRfdaQfkuoRratouOpBdgNaV/ISNkDq7oiQInofV0HPdwYSkQvlm3+uhmoi6PA6twc6wKhKqgJEzWxOiFE+kJIqrsyTJ98JWlfYPK67NW3U9DLHaNVhSnZf2TfcyBwc2wSVEdMMh829DrfC26OFY2PFl0cBdwOi9xHTVRNKGVhvT9SrZkmlaNGUzlqNHY26wseSxaTbG4k1dpCqrWFJR99SGxQJeVDh1M2dBh6+UoJHySojomeG4meHUOoRSOe1dCzGqotcUM9HCD5UBg77AshqA6a0YFmdBCJw6CV9tGyQmQzcTLZGNlsnOZMjKXZODglRJUoCV1QIiQh4RYfmGU+nCNsmEgBbl7ocD2J67m4eLjSy+ex9LCkQVJUo6i1+QGCfN4MJIrnEPY6iLhtxLwOom4HUa+9+F7FJep2EnU7+/2NLCVMVi8ho5eS1UvIVpWQHVJCVh+EpUaxewxGSCRkbUQyg9KZQSSzKF1plK68ENKVLYohwvUQ6RwineuVPLVAISWJFEA01I8YEuk9LWoWH9D76wq6g24hKg2i0vA/5cURUXhfEExEPnd7/plfKh42LmmRIymypESOpMyRkjmSwk/OmiyII3nXSM/wGhsPD0lS+uvhgSa6b+8VFAaV1DJ70nbIHuUfhaYxbuaHfRweTzUOYXy8BTXuoi1rRFEUqiZsgRrpcW4LkRc0ely/pQQ3lxc+lkH7In+6ZvpCR6gMQvEejo9wdy6R9Yjrunieh+u62LaNZQ2sDwwI2NipqKjg+uuv54YbbuCKK65g0KBBHHvssRxzzDEbumlfC4HIEbBRU6gkszp6VpIpJlB18qKI45HLOmiG7/DwPHBst59KMnSX0u0nb8jGSFHo+NVknr79f0z72TZoukK600IRCocNPYrnm58jl2ji2in7cuVzz5I2YMV7FQhVUD2pkdGj3+ULKXjxw22YPDxB5dB2FD2DqVWRycVYbsbpGnsGZcnvUbr0AULtrxBqeRWz5TWyg/YkOexY3Ej/yX6FKtBVP7QFzw9rSSc90kkPRROYhp+8VDf8EJeCO0cxBEaNilHTw+3RJbtDXJo9YnsOI/1h3wf+wmivObKEzP96jEwKuiuJxPoXMpSI/s09F9bSxVHgq7g51gVCFagJAzVhrHIZ6cluV01q1eExSIpCiUOa8IQK0u839F9GN3BzbPRoqiA1Y0mvaYX/70mT/9rvb596cTFV21VihsLkMr1zSOihEFVbjKFqizFYmTRty5bStmQRyZZmks1NJJubWDzzA+KVlZQPG0HpkKHoZsiv2KJ7uHqObCzXu5ESVEtBzVahpGvQmzViOR3TMjEtHdfs8PN+rOQAscKNeEYKw8hiGFkSJU199t91VbLZOF2ZGK25BIqbQPdKCTkJyAGOg+Lln7MV/LwKmgbCL6vqkC9NLl1cXBzPxhO+IOK7F/zBAEeNkzFKaRcCofj5lASAlIS8VD4Epp2w207EaffDYtx2DC/jv3IZErkVfdsvNDJaCRnNF0AyWokvhERKyJZWIoWGyA9S9My7KaUHGRuRTCM6fSFE7cqidPmOECUvkmjpHMKTkMwiklmob+vThuLPpAiIFcQQXwDpJYIU/kZMvyEi/+Pmf+TVCSMFNClIyDAJGc7vUN41Ar1CakR+fwG8vJXEwvKFkYI4Qo6M6JuHQzoO9BA5+mvXmHCaWakwj9eP4eTa2bSEBPqiVhRHpWJcHSIU6metnpj+S8V/SQleDlI56FgMrusLRlo+x0eoDMyY7/QwIqCaAxY+PM8riheu59+3uZ6H57nYtoPt2DiOg+e5uJ6H9Dwc16G9sZWGxcspL6vot0TmpoznuYic705FGaD9dBPC81yEvfGUQF0X7LPPPuyzzz4buhkbhEDkCNjk6VlJpj9c1yXerDF4TAkCZeCVZLyNv5JMutMiHNf5wcU7k2zLku6Rm6M2Usse5Xvx3+ZnWLjV/3hwwd4c/fkLpEJDqX+7HE0XVExoYPSYd5BS4d2FExiyYBRbjGsmVrMMM1QObiUdVopMpITU+HNIdBxNfOn9hDteI9z8EqHmV8hW7k1y2A9xw0NW3VBF+PdERncej2zWI53GT6xnQigkMEMKmkEvF44QAi0h0BIKjAR0HW1MFQ3XrKaE6tmTkS2fo0gLJaahxEOIUCJvuw35r42ovJ4S0fyKKl22H9Q/QNwum/RHTZhjStdbQtavilAEatxAjRurNH75IUdOd4UY1yOyfTUN177X7/KBm2PjplAyvr/zPflyA1pVmOTLDX3m+ed7I8O3nMDnH727yu0b4QjVo7ekevSWWOkUrUuX0LZ0ManWFrqaGulqamTRh++RqKymbNhwyoYMRTP6cSwJcE0P1/SgBDIyhytd/+HMtVFzCqZlErZGE2rdmrhlYOYMdFvH09L9OkBykUbcUCuq6hKNthONtvc9PlJgWVE8KwFOAs2OQTaGzMUgEwXPQKgqpqogVA0lX0qVvMjhe+scXCnxpJf3EXhIWUh46osdjojQZcZI0vfarrg5Ik47YaeDsNPe/XI7CLudqNIhZrcQs1tgpdyfEsiqCdJqaVEIyai+IySjl+IqEURJBFGarz6TF0P8sBJJqitJJBpByVgoybQvfHRlULp8EUTNCyJq0i+lKzwJnRlEZwaW9S3RW2yXqvhOkILwkQgj45HuUJlCDhFT7/sgnz++3Xu4etdIzw+G1DGkThnxfJ4R+LK1sE+IdXBRKsSnqShz20ayQ7iNJGFaFmSRXfXEh9WgmKsWnfunkMk2nxBceuDafriLtww8z99/xQTNQOpRXNXEVXQ8RcMTqi9eSA/HtXEcF9vNixfSyw9keb3kJEX456CiKKhCQSgKqhCoKJgphYY5y+g0mimLlxILR9d5wtdvKq6U6M0uuUVdqN/Ae9L1jSslasfmJ+5srmw8d+kBAesZXwxR1l8lGUm+lv03q5JMqiPHnFnzGDp4KEqPmNmQFuLA2kN5ueVFrNAKHpn8bXZqHMoO8+t5bdwwlrxWhmaqlIxezpgt30JKwdJ6l863J1BVKhgycTnx8sWEQ9XYdpSmXAfpRAXpCdOJtS8mtvReQp1vEm56nlDTi2SqvkNq2DG4ob5xw71YKY9Hv+Vpe+TxKJSxLaAMqunXxVHA7bBIz2wkvOM4vGUL83HHaWhv828eFTWfcC3ixxxrIT/5mhYC5Zt5SRWaSnTHGqI79l9CeE24qY3b3isUv4qLGtPRASWu+w/BqzkHAjfHxsuaSsYDhM9fjYjV1DLg7zIiUWq2HEfNluPIpZK0Ll1M25LFpNvb6GxcQWfjChZ/8C7x6hrKhw6ndMhQNL3/h0QhBJrQ0AwNKUO4povl2KTcVtx8UktFqGiomLaJmTMxrTrMji2JNRqYloHuaEjhYIf9MriZSAOdkaVkIitww81o4Q5U1cEwk2Am6S+ZKJ6JYpeg2HGEHUOx4ih2AuEkEDKBoqoIxd8HT/ruiUKYi+t5eeeHhy1dZL7dfk5UJb+PCp5qklSrSZp9E74L6RJyOn3BoyiAdL/XpE3Y7STsdkI//8KWCPkJUNVS0moZ6bwIktbKyCpRbDtELmegqAaiNIYopdsRgvT7ZyH9Er3SRUnlUFJ5IaQogqRR8kKIWiir63rQnkK0rz7hqNTVXq6QPnlD8vMw1tCfFMviruwaEUUBTxNa93KrQFO0omBSG7M5xGrnkbYy7m0rYatYB7bWDloJtLWgmC7xuiEoobUVOvKuSs/DkxLXU/Ckgefp/jnjuthWFifdgWMv888pKZFCw1N1hBZCaiGEaqDoJkrIRBE6hqL4SVXzLqI1tsHzUMIaJYNKydkWDdk20opNWUkJYbO/2sKbGJ6HFxZ+OffNMEeKTNuIQOPYbPhm3pEHBHyDGWglmf7FEP+9ba9dJZn+BJF1KYakuvov7zc0NpTdyvZgRut/MWtm8IfJP+C2GdcxeX49b48ewoIXEowxNaLDFjNmyzeRUqFReMj2rWh/cSvKajoYMqGeRFkaw6skY9nkRAfZ8lqyZRcRap1PbNk9hDrfIdL4HOGm58lU7Udy2DF45sBG0vuWp5UkO/yxRlUTmHmHh26CFjZQyyro+kv/Lo4CXS8uIXrOZLzmFWCrvoOjgOf6WeatLsjkH4aE5gsfRhTMeF70MPPJ1jZ8eT23LYvblu13nud5zPn8c8aOGbN53PQMMHQncHNsvBRKvruOR7Ityz//2Ltk9sqYMZ1Dz9qWVOdyFnz8fj4fxdpjRmPUjh1P7djxZJNdtC1ZTOvSxWQ62ulcUU/ninrEB+9SUl1L2bDhlNYOQV2FXb6n4BGSIVzpYDsOOcci61lkRBYRUhBhFSlE/vFWoLsKIdsgbJuErGpCXSOoad4d0zJQXRUXl2aznqboAjoiy8hFVqCFOwiFkoTDXRhGFpQcntmIZzb2bZinIpwYit0tfChOCYosRXdLEGpB/JB58UN2ix/SxZEelrQLer//e/UQPwQCKVQyehkZvazv90uJ4aUJOR15J0hvEcT0Uhgyi2FnKbEb+jYflbQSI5MpJ6uVki6IIUoZaa0ER6z88K6DEQKjBMoApK+HCFmMTJFI8Fy0dN4Vkn+pyXS+moyfM0RLZlDylWREaxJaV19JRpp6HxeIzOcMKTpG4mHQe/Yxgq32PR0j4R+7d4/zHUnppnrfMdHrYHikm+p599hu19KeP/kZO7e38d51L7EwZ/BQSyU/rq4nK5K0h0sQje0oqiA2vFvokFLmhQs/55kr82Eknj/N8Vxs18VxfYFDenkBo3gSSN91IQSKZqLoIVQh0BEo0kHxHHBTYCfBFmAbfn9rxvzwFs0AYQ5skEH4lh5FUYiEI7ieSyqTImtlKImXUhpLoGmb7qORyO+/EN9Md3FAwLpk0/1PDgjYwHypsrrOV68k01MQ+apiSNyIs2/1d3m97WUsczkNNa3cNvEQfjHzESYsa+KTIZV8/nSErQ4diVm9gC3HvoGUgiYhiXWMgRW1tK0ooWxwG0PHN1BaWobrhGnLJEnrFiWVI7DLLsNomU20/l5Cne8TaXiacON/SFd/l9TQo/HMygG31y9Pm8/jIbvzeBTK0w7auhp7bUqo1tXg1feO60dR/dhhIj1WcHzHR64d0k3+qJiq+TdgRgTMvOOjkIDtm2aN/bJPdRsha1tGN3BzbJwUBI5H/tC7glR/ZDotHrtmJoedM4mRE2H+//oPY1obQrE4tVtNoHarCWQ6O2lbupjWpYvIdnbSXr+M9vplCEWlpLaW8qEjKKkdjKJpeJ70U4FK/5lUSolbyFaJjqFpaNLDkw6uZwMuqgBd09BVLT+q7SFEFpssNp10AUhQHAU1q2O3OQxVxjMyNQmtWSNlOTSKThqUdhq1JuxIM+FQF6FQklDY/xsNJzHMJEJxkUYHrtHRb/EPYUfywkcCxStFdRLobgmmk0B4ET9Fg/RdHx5+slNbOnhS+uJHj22tLH74XyCw1CiWGqXTHNzn+xXP8gUPt3cYTMTpIOR0oOAS8zqI5Tr83CQrkVOiZLRS0lopWa3Ed4FopaTVUmwlXIh5AfLpJmShDo1CLlIKkVJYlTYqPYTjoKbTfrWYdEEIyZfYLfxN+pVkRL6SjGjuP3FrcbNho1sEKY1jHHlhnySjeF6/IseiPffpVfWkkIz0uJr5/N+isbyejPGtWILRZhtddGJrUTLLmknkchg1lTiqyOdukci8wCGL/YmfYVURii9g5O+JFFVDUfxpa0bFz/PRcz9scLPQlSRvrwRV9/tXI5oPJ80LIWsIK1UVlXg0jmVbNLc1k0qnKC8pIxaJBiJAwAYllXNQFcG8piTJrEMspLFFZQzXk0TN4PF9IARHKSBgA7M+KsnY/VWSkdIXQQqOEEWgqApSrPoBVxUqI2J17Fy6G6+2zaC05gWe7TqVqQ2fsG39bDpLYiyOhZn9ZJgJh49GK/+CseNeRyJoBiLlaeSyUbQtL6NteRnlQ9sZvlUH8UQJOdujOd1B1DRJ1GyJXX45evMnxFbci9k1k+iKJ4k0PEu65gBSQ7+PZ1Ss3YFdKawFTSc8ZBAND67exVGgt5tjDfkoVC1/M9VT+LD9V6YNUvnEgEpB+Cg4PsLdJfe+acLHpsjaltEN3BwbJWsjcBTIJu2i0DFqmx3WidBRIJxIEB6/NbVbbU2qvZXWpUtoX7oYK5WkfdlS2pctRagqsepaSgcPJ1Fbi6ZrmJqCqgo0RaCIfF+Bn2PKv6r7iRQt1ybnWLiegytBeCpCVekVpyDA0z0cPUuH245X6qAU5kuI2Sql2RK2zg7CTnu0tmdpcdI0yS5aRSq/KQ8zlCIcShIPZagwLaLhFFqkAxlqQWpZpJ5G6mk8+iYTxTN88cNJoLglvgDiJIg4JUgn6gs7efHD8Rwc6fYRPwTd4ofaU/wofIVikDIqSdGPOC49TLcLJbmCUi3XwwniCyK6zGF6KUwrRam1rM/qjjC6c4AU//qvrBpHiv5de7I7mgRUDWkmcEoTSCmK4SVy5RUsOx8Sk0FNpdFSeTEk5YsgWr7MruK6iIyFyFjQ2AGanzB75SSjq2Ql8aPQjqrQQvYqC/Ni2wj+0lTG+VWdeDKNqXh0EqK9oZUS2yZcVYFq6HnxQkER+vqtTKco+dwd/QgfTgZyXf7xUxRQdL9vNaM9HB/932gZuoGu6WSyGZY31VMSTVBaUkqov1w6AQHrkYzl0tiV5faX5/HEzOWkrW45OWKoHDJpMD/bcwuq4iHCxoZ3Cn+TCUSOgICNhHVRScZxPJych2u7xUoyjuOSS7kk23LESk0UtffDdsJIsHflvrzV/hqWvgQz/jlXTDqav7T9kfHzltO13WjaXMmcJyOMP3xLRHwu48a9xiwpaGyGEdtkCDUPpXV5Ca1LS2ldKhk0LMWI8QrhqEkqlyNr28TDYeJDJ2CX/wG95SNiK+7BTH5CtP5xIg1Pk645iNSQ7+EZ/ViYB0B81GDSX6aEan9ujoGg6v7L6CF8OPlka5lWSOWt4EphBCrWnWW+KHwEI0nrki9bRjdwc2xcKKrgqVv/N2CBo0A2afPsnZ/yg4t2Zs7by8kkWzDCLkbYGVDUmef5aTn9Ef78sxdeMZRERaBGS6kZX0rt+K2xujrpWLqYliWLyaWSdC1fStfypaiaRuWw4dTUjaBsyBCUVWXNRsHQDAzNIGKEcVyHnGtjORY5x0ICmqKiKWofMaAXAlzDxTUy5BJ+ls8oEMVguKzATZfT2WbRkbZozUVpyyZoR9LzqqhLhVrFpDrkURbKEQ514USbsKIN2OEmXKMDFAvPaMYzmvu2QSoIN+aHvjgJDCdByCkBJ4Fnx8BT/dAXz8HOix+OzP++snfOj/7ED38/Fd+doWuko9E+S2hupjv5qdPeKzGq6XahSYu43UTc7lvNxkOQVRM9hI/eIoirGEXNqWdh3N5/ex5QDaIJZFUCB3BkjyWlnzzW8zxEzkakfGeIlsqgZfuxp3wJXCfOfqUL+ChZSYsd4bl0jCNKc2QdG83Q8bwwdkeKqK5j1gxCbMgQj9UJH3Yach3+NKGCohJKtkGH8MNKFdUPN1VUhFCJ6CquptKR6iSdS1MaL6UklkBd5f9gQMC6I2u73P3GQq58dna/89OWywPvLOGBd5Ywff9xnLhbHSE9ODdXRSByBARsQqypkkwBKbuFENtyaOzSiJSapDttNF3BjGpFq2ZYDzM0MpSdS3fjtbaXKB/8IvXJn3HD9kdxwRt/Y/L/5vPa9mPIZm0+f6aELQ8ci4jMYautXuOzzxQWNcLQGpeJY0tYNruU1vpSmpfEaF4iqRqRY8RWJkrIozWZImNYJKIRIuFtaSu9Gr3tQ+IN92AkZxFd/k/CK/5NuvYQUkOOQuolAz4uimkQrh1Ew98H5uIo0PXiEiLnTCa7dAWKZ6FqfDULq28twX+EwB9xch1wc5BuhuQKQOQFkh7CRyGx6VqU1xsoUkpwJdL2kMYmHKf7ZcvoBm6OjQ7PlRxw2jZr5eQACMV09jt5az5+aSlz3pBAeXGeZrjoYQc97KKHHDTTQQs5KCEbRfcQAlREvqIDaApouoIqVFTVzzegCj/ptP8QDiIRZtiQauROO9DZ0sKKhQtpWLiQbCrFigXzWbFgPpquUzV8ONV1dVTU1q5S8FBEt+DhFQQPx8ZyfcEDfMFDrK1jTIAaFZRFTcowqSOO43m0d6Xo6MrQkXLpsBxs4bFYZlicATKgyASD5FBqvFJqvFIqiaCE27HzlWBy0Xqs6ArscBOO2QqKi9Q6cbXO/sNg3DCKk0BzEuhOCcJJIO04ODFcN4TruUXnhyP9ktH5Sqy9xI/VZeF01DBdapgu+ia/VqRDyOlYqRpMR1EUUaVDxO0g4nZAblGf9S0l3EsA8cNh/LAYS4mu8rpenNyPQKIiwDAgbkBNKQ7griNHYNxQIevxw8oF3Lh8Ai911LBT6VKGhzxSlk1cVUgLE6WlAyEEZnUFQv8GPVL0J3y4Ljg2ws35DsvMSuKSUECoqEIhoarkXIXG1qUko3HKE6VEIzGEqvvCiKL7zsxvQM6tgE2DjOXytzcW8Idn5wxo+SufnQ0CTthlBOE1JSn+EliWxeGHH85FF13EzjvvDMDMmTO58sormTNnDlVVVZx88skcddRRAOy9994sW9bXAXfmmWdyxhln0NnZyR/+8AdmzJiB53lMnTqVX//61yQSiXXe9gLfoCtSQEDA14UQAlUTqJrfTxsRhcphMXJJh/bGDMm2HKGojm76HXhZqJw9yvfirfbXSKqLKC+Zxytszb5jdmDy5+8xeV49b46sJt2WZPGL1YzYR0JoLuPHv8Jnn+7J0hVg2S47fssl19LAks8H01ofp3FRiMbFkuoRMHxcCNuxaOrsJBYOkSgNQ2R7Wku3Q29/n/iKezBSc4gte5hI/ZOkBx9KavARSH3NF8joiFrSH335EqpeWRUtsxahqmCYAt0QaJrwtQj1KwgfQvQQPvIUhY+sn98jWe9PVw1f5DATYEa6S9lqobX6Sul6vqBhe0jXLwGp2OBZLjLr+qOimkBoCkJXEOqm4WD4amV0G4lsG7g5NhZUTSFWFuLI8ycPWOgIxXQOO3sSLfWNfPLWR0QrFeyMhpPV8RwNx1JxLJVMR991FdXDjLiEIh7hqEs46mFEPUJRFzPksaZ8vkIISgYNomTQILacPJmOpqai4JHLZFg+bx7L581DMwyqR4ygpq6OspqaVSYK7iV4yDC262A5FlZe9LBcB8d10dU1ODxWgaYoDCqJM6gkDvghJp2pNO3JLO2pHB1ZF8uTNIoOGpUO/of/0F/qRqjpLKW2dSI13hSi+NcuiYdjthfL4eZiy7EiDdiRJpxQC1LLINUMrprBNfsmE8XTUNwEISfRLX7YMaQTx7XC2JKi+CE9P/xF9SxUVF+cWpXzo+dXCI20XkFa7ydsUkpMN7nKajCGl/FfVoYSq77P6q7Q/BK4/bpAEkix9rfqQtN6+0P6y8kBeTGgd04OAF1V0RSXLSPt7Bxv5O2uKu6t34pfb/E6IU2QttPEvVqSRFCaOxCAUVOxYR0da0JVQah4WgRCpdDz30fil7b1PMAFz8WUNjoOmbZ26lsXEzcNyiIhTN30t4Xqh6lqZnc4TFH8yAsgiuYPWgThqAFroLErO2CBo8CVz8zmu1vXMKJi3f7f5XI5zjnnHD7//PPitKamJn7yk5/wgx/8gCuvvJJPP/2UCy64gMrKSqZOncojjzyC63ZL1M899xzXX389hx12GACXXHIJixcv5s4770QIwaWXXsqFF17IjTfeuE7b3pNv8NUoICDg60RRBLGyEKGoTkdLlq7mDFbWJRzTiBsxqsM1fKtsCq+1ziAxeAatHaP5/djDuKdhHiWtbWwzeBAzVUHrsibCb4+kamd8oWOCL3Q0tgzhjc88vjWhinElC0h2xlg8p4r2FTEaFmo0LpLU1IUYsqVDl0yTsSxKIhGi5SHs8A60lkzG6HiH+Ip70FNfEFv6AJH6J0gPPpzU4MORWmyV+6bHoxgj4sR2XEN52lVgtXSh6eA5klSXLKYBVPKuGTMk0A2//LCWv7dZ98KH7Vd1Sa6ArnxHopn5qi4JP+64KHyY+dVkL0EDz/PFC01BjRsoER1PlVhpBaMugeKCtDy8lI2Xc/DSDtL1/Gz0uj88LfSBler7pvFVy+h6lvslHgcDNhRrI3SEYjqHnbMdXY2tLHpjNjWlEbQaEyPkoWg2nsyQzblYGZtcBrJplWxaI5fSyWU0PFch06WQ6YK2lTcuJKGwRyjiEop6hAt/o74ooum9R5OFEJRWVVFaVcXYHXekvbGRFQsW0LBoEVY2y7LPP2fZ55+jm2a34FFdjViN4GFqBqZm4EnXd3ekskgpyToWAr+EqKqs+UF/VShCoTQWozTmX4OllKSyOdq6UrSnc3RkHDIOtJOmXUkz2/DL1kZUnSo1RjUl1DpllHWMIdI2rs/2XS2NHW7EijSSiy0jlw+BcUIteEYHKA6e0oqnt/ZtnBQYbgzhxIsCiNqloSsVOE4Uz9W7w17wM1gpQkHJ79eAjokQ5LQ4OS1Ouzm0z2zVy/XrAIk47ZhuJ6p0iDktxJy+pYslkFPjxWSovQQQtQRHDa+0vMTLZhg388Ne052G5Xy+13d6Cx2KwugXnkev7d0vetkMQgFDE6Qtl6MqF/JpuozlVoz/NG7FtEHzkUY7GS9NRB9MZzYOzR2UKAK9qvybLXSsCkEhgzs9H40UIBoBx3XpyFqkcyplikZC11Ep9MtZ8BxfJOm5wYLIIfJ/NbO7zy6KH3mhROTzegViyGZJKudw+8vzvtS6d7w8nwsP2IrIOkpG+sUXX3DOOef0SCDs8/zzzzNo0CDOPvtsAOrq6nj77bd58sknmTp1KuXl3c7Hrq4ubrnlFs4//3yGDBlCOp3mueee44EHHmDrrbcG4Ne//jU//OEPyeVymOb6yX2zEV6JAgIC1ieaoVJRGyUS1+loypBuz6GHVMrNCqaU7smbba/SIuexRdUC5jWO5Nadj+ZXz9/B4E/m07n3JOa3dLFszhJC0fEktvHA+ILxE15m1md70dJSy2sf1bPLpKHEStsZv9MCOrvKWPJZCR0NceoXwIpFGrUjNWq2sGh2OsmYOeKRCOGQgRXamZb4jhhdbxGvvwc9vYDYkvuILH+c1JAjSdceitQiffap9f3PVmkHllJSX19PbW3tqh/epcyHAeUrt+SnuS64riTZKf0bHAGKJtA0MAxf+NDy9y5fXfgw/FePNuFa4Fi+26PLQ7ogRQgpDaQWRegRRDiEEg4jSqOoIQ1hqAij26Hhui5oAsVQu+OOy0O+48PykJaLm3ORadsXQDKWX+VYFb7gsZG4PVZXRtduz/J580ImTtl+lbHXSpDga6NjIEJHKKZz+K8mgwIuGiMmj8HuaMPqSqPYoMkYqmog8gWVpOrhKRZSsZCqg+MmyWSyZFIe2bRCJqWSTRvkUjrZtI7nKnlRRIV+UlHohu/4KLhAQhH/czjiYYQ8yqqrKauuZtxOO9HW0OA7PBYtws7lWDp3LkvnzsUIh4uCR2lV1SqvM4pQMTWFsBaiLJrAdfOih2tj25Z/mfmKggf417lYOEQsHGJYflrGytHWmco7PRySliTt2ix021hIG7AQIyyoiIQYpEeoUhIMchMYWRM1a2AmhxPqqoOVjBxSONihFnLRenLx5eSiK3DCTTjhFhyjDRQbqXUhtS7AF1cKaZ10ANdEOAmEE0faMTw7hmtHca0YthtC5o9EQfxQhUB0p2wdEK5ikjSqSBp9w96EdAm5Xb0qwfQURDRpE3K7CLldlOX65oayhdnHATLvP3eyxb4/QvnnybDgJVB1tAuW+qEtPZORahp6bS0Lvr0tzxyY4a+DSqgIlXNR9Pt4DpiaQs6RaMLme4MW8JeGLXm6dSjbx1qoMXQyIklOW0w4VkpHtgRaHEoAvaoCoW1a10tNVUlEw2Qtm8ZkipRtUhaLEjHD/f+/Sb+sMNLxhSU3B046P21lMaRwg6B2V4nRQnkRpHADsdJrIxxoCPDvNzN274A8AShC8MTM5V9qm4/PXMZFB44nYzl9svuEdXWt7zvfeecddt55Z8466ywmTZpUnD5lyhS22mqrPssnk31LYd91111UVlZyxBFHAKAoCrfffnuf9V3XJZVKYZom1157LY8++iidnZ1su+22XHzxxYwZM2at2r4ygcgREBDQL+GYgRnWSCYMOpoyqJkQZWoFu5btzqutL6FWzUBrqmNGdAv23W4PJn3wEmNe+4yuqVvT1NDBwv/NY2x4R8wtAf0Lthr/ErM/25vmlmpefX8xu25fR0x2koi1MGFKjvbmFpZ+Wk5nU4Ll86B+gcHgUTqVdVkyVgeJSJh4PIwe1rBCu9IS2xmz6w1i9fegZxYTX/w3osv/SWrI90jXHoxcaYSrkOLeKC+hZMsaOuauwGrt8KcXXv3NXxVC5IuqiO4KdwXhw5YksxLwb2YKoUGGKdD1buFD1b78jYrfZMN/eVFAIFQPISxUzUJRuhCanytAyDAiGwZRBsRBhkGP+Lk+VrV7qoIIKxDWUOnhCrHcvNhh42UcvIzju0SE6C18bGw3YZtRGd3NidUJHaGYzhHnTUbTFdKdFrHSGJTGkLWVWJkUma520m2tuJlONEXH0E0UV0V1Q2CFEB7oAsIaeGUusiIvfigOHhk82UYu55BJC7IphWxKJ5syyaV1sikd21KxLQXbUujqYwEBRZErCSARqkcNZ8R4m3TnMhqXLPIdHpkMS2bPZsns2ZiRiC94jBxJyaBBqxU8NF3D1E086WI5Tj6cxca2c37p1nUgeBQIGybhQSaDB/mfLcemPZkPcUnbdFkeliup78pQTwZoQVWgLGJQUW1SHjWo0KKELBM1Y6BmDdSMjpo10DNVGJlq4s2Ten2nROIanWRjy8nF67Gi9X4+EKMRGWpHamlQc0i1CWn6yUQFPW6MpQJOHOzeAohnx/DsKAKtR76PtRc/AKRQiyJF35kS3Uv3cn70FEFML4Uuc+h2Awm7W/1xj5qOEorDDx/qtbmtVnJ3FBj5wkecBpyW/7yoaRazH12OrivoCmQdmx3jzbzdVcmn6TLua9iCs4d+gkmcnJVB0XKEIk106AZ0pkjgYFRVb3JCB0DI8Ms4p60cmTaLknCEsmgUfeV9FSJfcW0Nj1lS+i4Qzw+RwcmClcw7bnqKIUq3M6SQE6Tg2lT13gJIT2dIwDcGKSVH3v4m7y/qfbHfa2wVP9tzVK8qKmtD2nL537J2bntpHi/N6Z0UeYcRZfzjZ7us1f3YMccc0+/0oUOHMnRot1OtpaWFp556ijPPPLPXcplMhvvuu4/LLrusGFIZCoXYY489ei13zz33MHbsWMrLy/nvf//LQw89xC233EJVVRXXXXcdF1xwAY888siA290fwX9AQEDAKlFUhURFmHDMINSo0bqomV1CU3mDV6l357JD3VLeWjCMP9Tty5+WfU6sYRnbzK7nrVGDSLWlmTdzLmNDu6IOl6DPY9z4F5k769s0Nlfx6rvz2WXyKEpNHXKdlJZHKdmzifbGFSz9bAhdzVGWfSGoXxCmZqSHNTJN2rIojUSIlJooEZ2cOYVsfBdCydeIL78XLbOU+KK7iCx/hNSQ75OuORDU7gd5o7yEsq2HI16/lrLdzqbtk8XkWtpXO3+1QsfK9BQ+CngSp4fwIfEQ+MtoGhghgab5woem+U6Q/pCuRDogHZk3jQiEng8BTigoukDoKkLXET1zTniuH+Zip/2qLlL6llgt5Fd+MUvQM02Q64TIqivXCCEQhgpFR0PIb5Pt+m6PrItMO0jL7e32KIS4BPksAjYQ/QkdKwscPRGKghmNY0bjxCqqySU7SbW3kM4kkYrECIfRVBMlH74vbA9hayiuCnaY7ng2gak6xEssZJmNFBYeGSRJJBa24/guj4L4kTLJ5gWQbEbB8wTpLo10V397VY4RmkD5MBu8RWSTn5NsXUAunWbxrFksnjWLUDRKdV0dNXV1JCoqVit4hHSVkG7iShfbsX3Rw7WwbWedOTx6Ymg6VaUlVJX6CaRdz6MjmaItmaEjbdORc3E8aE5aNCf930fQQklEpyJmUl5mUD7MwNRU8EDNGb74kdaK4oeWNdGsEmKtJcRa+45AemqObGwZ2fhy7NgKrHAjdrgZ12jF0zvxVawO0P2cE/ksDN04EaQTQ1oxPCeGZ8WQdgzpxFC8MEIoaPlkp1/qqAmBrUax1Sid5uA+sxXP7lUNpiCAxOs/pcGdw+wvfrvWX7nFmN/yTlLSoNYz2h4MCHDAFR7HVM3nskWT+CKb4LXOavYoacBQQmScHEKGMBVBZ7gFL9NBvKUTs2IkqrbplWBVFEEsFMJ2XVpTKVKWRXk0SjwcQllbcV8UEo33X9q2iOflXSCuL4o4abC6/Gm9xu/VYu6RYkiMavoDGqoGKCh2Mu8mCfrkr5v+zo6oqZLMDaDc82pI5Vxi6yhcZSBks1nOPPNMBg0axPe///1e855++mkikQj77rvvKte/7777eOaZZ/jzn/8MwLJly9B1ncGDBzN48GAuuugi5s+f/5XbGYgcAQEBa0Q3VQYNjVOn19A5r50do7vxVuoVuuIvUm4cT6tl8Pddj+TH/74Nc3E9k7YYzDshm1wyzcL/fcEofU/EYAnafMZu9SJi9ndoaKrgtXfnsfOkLaiMapBpQ2gmZVUmicoFdDSaLPt0GF2tIZZ/obJiQYSakS6ZkZ0kEiYl0SihCh3SOjl9Ktn4FMJdLxFbdh9adjmJhXcSXfYPUkOPJl1zAMagSl/AePiHMO9FxLL3Kfve/bR+IqG+HqOipN/5ay10rIwi0BT8Id880pP5RO+SXMHxIfDDYTSBZko0FFQFVCRCKIh8pTs1pqCYAqELFB1YUxiMovpiRs9Stp7jCx9WEpJNRNrnw2IgUQvxGohUDGgUSKgCoWoQ0lAT+UotjoeXD3Px0o7v+Mi6SNcGhJ/UNC96iLVIABoQ8FUoCB1HnDeZp2/7H9N+tk2/AsfKaLqBVjaIcEk5ViZJprOdTFc7qVQrumGihyIoUS0fPgbC9f/iSoQlUTwVrDBChpF+3ANSEUjFxlAsInEHmbDwSOPRCdhI4eB6LlZGJ5cMkU2bZFMm2bRGNqWRTam4rsDKqlhZFRgLjEWPO3j2Ilx7Dp49j2wqxaJPP2XRp59ihOJUDBlF9cjhSG3VriVVqKi6SkjHL9fqOuQcX5CxPcd3Oqgamli3o/SqolCeiFOe6E5mmkxlaEtmaE9bdGQdci60p23a0zaF6PWYqfqiR8ykImoQLlvJnu0ItLSKktZRMzpKRkdJaxhuDNU1iXSMItIxqk97PFxy8e4QGDvaiB1qxjVbcfV2UCzQ0ggtjQg19nlclJ4OefdHQfiQdgzsBMKNoQntKwtGnqKTMipJUdlruvl5G9/a5ifMX3wruVzfRKerwjRrGVx5IHe8eSiW1sX5Yj9MT0eRBtmMS0nI5eCKxfyjeSSPNo9gYrSNMs1CV3TSXgZNxFG8MlJKGrLzcdo7MEvr0NVyFLGGh/j1QGzkFmhmCLu9jUxrM57V939dNQxC5YPQS8twclmSCwaeF0FXVRLhEFnbZkV7O8lsyA9hMYw1r7y2FBPErkkMcX1BRObdIbblD2B4+YdoTxLuqIdGw+/rQyW9K9AErDeEEPzjZ7v0CVdRhGBeY9+Qj7WhOmFy9VHbctWR2/Sa/mXCVdZEKpXitNNOY+HChfz9738nHO7tmn7uueeYNm0a2ipy89x///383//9HxdccAG77747AAcccAD33Xcf3/72t5k0aRL77LMPRx555FduayByBAQEDAghBLWVlSy3l7BfeF/e+fg1Ftuz2HN0A//+rIZ/yaHssfu+jJvxbxIvf8jWP/w2Mz9ZQGdjG8vnLGaIsjeiRiK1BWw57nlUdV+WryjjzQ8+Z/K2oxhSVgWpZvAcVD1CWbVDouoTOhuqWfppLck2jeVfaDQsVKka6VAzqo3y0giJSAQ1rEAKsuq3ycSnEu58ntiy+9FyDSQW3EbUWI6y5y1FAQPwhYyHf0j59+4np0jKx4/od/46ETpWPpY9hA8pJXggbYlnSayUR1YKpOIidNDCAi0sCYVBDyvopoLQfUHkS6NoYGhgRCHkYYeTfqnarmXQscS/8SkZCtFKf/pA90sI0P2HJKI6lPmCTjHEpZDMNOe7PfIrdYe4BG6PgPWIqikYIZUfXLwzybbsGgWOniiKQiiaIBRNEKuoIpfsItXRQjbZAQiMcATNMJE9nFgSwPX/v4UrwZEIW4IDiqOBl78FKwofElRf5JBYhCIWXiSDRxroQgobiefrKTmDbCpMNm2SSxlk02o+H8hIrOwWSGnj2QtxrTl49nysbBf18z6ift5HCKUMIzqGePkWxMvL8qEwflWYUMQt6puqoqEqGiE91EfwyOAgEGiqus4FD/CTfiZiURKxKCPy01LZLG2d6WIy07QjSeZckrk0i1rSAIR0hYqoSXnMoCJmEg9pOAkJCQfIIIH2tjZK4nGUHL7wkdZQMwaaFfJfdhhFaoS7hhLu6ptI1MPFjrSSTSwjF12BFW3ACTfjGK14ejtSSyEUG8w2VLNvHJKUApwobkEAseN+WIwTR3NKEPKrPSTnUp2s+OJ/1I04nTlzLxzwenVDfkbX408w9eV6HtpZ4SkxkyOUHTFNiZsFO6eya6iVd81KFuZiPNg4kp/VzkETKlJIkm6ahBYDN0LaC6F0duEps3ESVRhqJRoliK9R7NDMEE3JFIpuMHzHXcgmu3C6uqjcdnvsVBdaPEEoFmPx4kXIVJpB0b75vNaEEIKwYWBqHumcRSbvNi2JRtBXkd9pvaKo+bK2qzjOqk7tljvAktnQNNsPW40OgnA5hNZfKc9vCkJTGDV57Ib7fiGI9FPudYuqGBFD/VIhKxFDZYvKGCF9/Z9vyWSSk08+mcWLF3P33XdTV1fXa75lWbzzzjv89Kc/7Xf9u+66i6uuuorzzjuPE044oTi9srKSZ555htdff50ZM2Zw11138fDDD/P444/3EVHWhkDkCAgIGDCGalCdqCItU+xaszuvrXiFRcp/GRs/jjldgturv8VvR82lZP5cqp5+n9EHb8/nHyygcf4yItEwZco+iOr/ItWFbDHmP6jKNJYsj/PezPlYE4YzsnYwpJog14UwY6iinNKaVkqqW+moH8rSz8pJtgvqP9dpXKBRNTLH0C1zDCqNEkmEEGF8sUPZl0zJtwl3/If4sgdQ970Y3rihW8AokBcyag64obfA0XP+69dSsuMZNL21bkQO6fkPPf5oLwgkKH4+CyUMuqH6nmgNpADHBsuRZNpBtrmoqlfM72GGQDcUv6St7ttovzR62K/Q4jmQ7YQVH/vuj2h13t1Rnr95WjuEIhAhDUKg4t+8S9vzS9ZaLl7W8au5FN0e+XwgBeEjcHsErEOyaZuP3pnDyC2Gr7IE65rQjRB6eYhIaQW5dBeZzjYyXR3kUkk000QPhVEK/yuqABVk3skloY/rQzgSbOmHv+R0kDoQBiUvfqgShJ0XOSw/7MXMYJhpEuWZvCjix+8LqeM5Orl0iGy6imxqMOmuPWhvXEKq/QvszEKk10au6x1yXe/QsqQC1dgSxRiLovrZ8Q2zRzWYvAASimqEIy6JUAhXruTwkDaKUNBUFXU9CB4FoqEQ0VCIguyQtSzakynakznaMzZJS5K1PZa1Z1jWnvF/K0VQHjOKTo9ExPCFVU0DDdyoxMXGlhbS7QDXRdoeIitRMvmQF9sXPjQnnBdAVMx0JWa6sk8bPeFim13kEsuxYiv8UrjhZhyzBU/vwNM6EcIFPYmq9z96K12zW/zICyBKvjwubpj+Te+9aW+oZ/yWh7Nw0S0DcnOYZi21Qw5n/m0HcPgKl8UJeHWrBRzesogR6miW6iPp8MJoQuX7JYv5Y+NWfJSq4INkOZPjreho5LBJuSkSWgzXUUjLGNE2GyHb8UrSqEoMnUF5sWP9P37Y7W0ousE9996HpmmMHDmScWPHMqIuyqLGJma/+hoLFizAcRyOP+447PZ+qvMMEEVRiIVNLMehJZkkmctREYsSC4W+Ufmp1MoajNIKXMYh6xeDnfEHNjqX+2V1o5UQLl1z+MxGilpiYsYMpMtKsWcbFteTHDJpMA+80ze58Jo4dNIQPG/95xTzPI8zzjiDpUuXcu+997LFFlv0WWbOnDk4jsM222zTZ95jjz3GVVddxQUXXMCJJ57Ya95LL73E8uXLOeaYY5g6dSpnnHEGu+++O3PnzmXbbbf90m0ORI6AgIC1oiJUwZLOJRy85YG8vuJVFrqfctiWrXzxfhlzsiFe2v0Qpq24Fb2llRGfNpHaspblc+tZ9Ol8jHCIqNgXUfUcUl1E3RbPoKkHsGBJlP99uphcbjBjR9Yg0s2+0KHHEEoCKXKUDF5IaW0bHcuHsPizEKkOQf3nJo0LJdUj09SNy1FRGsUs1SAMpARZvkumdB8SH7xKZPczEMve71fIUG6c2P/ObrE3crez6fhk8Zc6VgWXRkHQQEo/Kboq/IGWqO9iKIgaK98MCcAwAbN7uudKHAeyaY9UF4CHovj5PXRTEIoINF2g619S+FA0X9CIlIOV9m+AOhbz/+y9d5xc5X3v/36e55TpO9uLpN1Vl0ACCdFsjMG4YWSIwWDHLbZTrlPsJA5x7vW917n5Jb4pdsCJ4zjlJnHBgAs2jm3ABYwxpiMkUEHSStpdrbS9TZ857fn9cWZXu9JKSEKixPN5vUazmjNzZs6Zcs7zfj7fz5dIPdQtCmd9rPhp7Y/Z7TIlypSh24Oq28Otuj3K1TDTik+Qd6sZIlTzRiQo8Yo6aazp1ad8pnhG1iOlJJqoI5qow62UKeczFKYnKGWnEVJiReMY5gKz8kKEENM4CnzMZHz4Oix3mXF9uEBgAiaIGFpWwYkMQPho7aBxCEQFTRFhlIil8kTrXHS1Xl/oKIKNOJUN7N9+gPzYBNmxQ+hgAq/8GJQfQxpNSGM1gb8ap5Imu1AYqtKzbXAjMQ8r5mFGHAKriGuWcYSHFOKsAw+AiGXR1mDRVu1c6Pk+07kiU/ki0yWXbCXADTQj2Qoj2Ur4+gUkLElrUdKYsKiPW5hKzgEfBsIGEuHvkhNUqHhF8HwCz0O7HqpsYnhzwIcXw3CiKNcOAUg5jV1Ow+g5815vID1cq0glMYaTGMSJhwDEtyfwzQyByoIqI1QFoSoQWaClbKDQXiKEH25ytjVuCEMSgKJh0TLWXvom9L77WbrkI+ze92cvuC+Xdn4EDjxI4orXMf2Nu/j97/lkY3Brh8u3Dz/AGq2ZMloYtpZRZy/nzckUP8ot5hujy1lp5UlYDpYwKQdl8l6JlBHH8aAoDBLTPlIrdNqlIvtxiWPSjEHqrMKO8uQ4nRe9BsMw8DyPnp4eenp6jrmfaZp0dnYy9NRjL/o5LcPAVIqS4zI0NU0yGqU+HidivQKggWmiGhoZ/7cdNP3mOryJ4fC3yIqFsymVDBQnQndHogWi9afk5HzFSwmMOpvx/7ed5v927CD85VTcNvjtK5afFuT4yBXLzlj72BPprrvu4oknnuCf/umfSKVSjI2FIaemaZJOpwHo6elh8eLFWEeVbE1PT/Pnf/7nXH/99WzevHn2sQANDQ0EQcBnPvMZmpubWbt2Lffccw/RaPQYp8ipqgY5aqqpplNSykqRjqQRFcFrOy7jkcFfsF3+iCs7388DB32+UWhi/RuvZdn3v4715LOsWnUNxbYi08MZep/rYZV9Lra6GpruRcsBFnffi6Guo6fPZs++QRzHZf2axQhpQnkajAhC2UhMApGlbtF+NnS0Mnm4gf5dkmJWMLjXYrRX074ix4pzTeqTMWSDhBJQEOSKayg/O0DDTV9FfOvXjgUdbetD58JcLb8KfYqlKjrQR4BGUHVpVGdysQmDOw3CHI3TLDeRSoTZn3PAh+9rfA9KxYBClrArnQwhh2UL7OgM9DhF8DGT5RF4UM7A0LNgJSBRdXdE66t1wi9OQgqEbYANKll1e3jVXA/HJyj5BCUXXfYJvOqM9Uy2h6lqbo+aXnaZdgTTjhBPN1Ep5ihmpijnM5TzWUw7ihWJIk70XRFiNtlSMwd+BHPKXXxC8OFqhK8RrgBd7eAg58IPjcadhR9aOGiKBJQwbJfm5VFWXbgOz1nLxMExRvoGmRwcIfDGCbxxKD9CNNlEomE5VmwlnldPuSCplCSBLyjkjCpgPRrgaKyojxV1MCIORsTFjrpEqy1xlXl2ZxsNpWhKJ2lKh7kevg7I5othF5eiS6bs4waQrQRkR3L0VBuSpKIGjQl7tsxl1vYtBUIaIfygGtMYaHTg43k+npclcCfQvg9eABoML4LyoxheHNONhi6QSgTl2cjAwC6nsMspGJ8/C+obDp5Vxo1OUZl1gIzNc4BolUdIH2FlwDr2mKQ1YRlM/Wr2PnobidFROt75EL0D/3JCN4dtt9Pe+g7kFy6h7fJfxRl9PcUHf86f3BXwvz9gcEvjIv7X+CHqvVHqvVHWFh/nYvk97rEu4nvexfzn2GLe1XQIZfhYKkIlKJP3BUkjQdnzKEqDeKaASQJVX08gilT0DOyYcXaceSDmOw7lfJ6lS5cuCDdm1N3dTTmfWzCz43QkhCBmW/hBQK5UplhxSMdj1MWiGC9HCUtVsqmN4tZRnIM5iltHiXS3EQxVB9WGCUZD+CFyCjDVB9lD4eRGvCl0ebzKu7XImEHxmXD7C1tHiW9seUWVyLYkI/yPq9fw1z/cfdKP+R9vW0NL8qXJVPnRj35EEAR85CMfmXf7xRdfzG233QbA+Pg4dXV1xzz2kUceoVgscvfdd3P33XfPW/bAAw9w1VVX8fu///v81V/9FWNjYyxbtowvfvGLC67rVCS0fnX2zfN9n23btrFhwwbUi/zROJPrejWqtv217T/V7R8uDLNzfCee9vjEQ59Ao/mNVZ/iy/fFmHYEb06V+eCWu2ncuYUgHif3O5vZ8tguyvkSsfoUKy5YjZGOoxu+j5aHQEcYH7ye5/eHB9GOtjSbzl+GrGSgMBGWSZhhvWxAEU0FRSNKtzI+YNG3S1DKhwMDw9IsXuWzel2EZDwCGnRRQ0FjplM0XNiF+Ob7Z0GHf/UtyIt/neDJ/0D98OZwA08CcBzj0gg0QnLEpWGG4aCzUOMldh/4Xgg+PE/jh7mmKBV2f7EjAjsiMCyBVJoDB3pYvWYV6oWAhdbgFqCUCTu0xBogVXV3mKdfN3kyCt0eVfAxJ9tDu8ERt4cRQg+MU3N7uNNlesZ6Wf/6TbXjyStMZ3p/Tg7n2fLIDtZfsOa0y1VOVk65SLnamcUtF5FVd4dayN1xKjra9VHN+hDV/I/ZzpPVrA8UYemL0Pi6wsjIAC1tDSAqs7+nTrnA6MAhRvsGmRqaYO6pYV1TE23d3TQv6QaZpFxQlIoqbItbVJSq14F/4u+cMn2sqIsd9bBjHlbUw466oRvE9jnbP5Faa3LFIsNjU5QDSabsUV6gBD5uqbC8JWHRELeJ2y8Q3hdotO9XYYdH4Hho3wvzWGacNEKhgjimGwvBh1OFH04E5R9/ll+j8U0H3yrj2oVqCGoIQFx7At/IoI0s2siCPLZDw+pVfwbAnr1/dtznWLPyz2gbLqN234t/01d57iffQfz9v2MfGmMyAf/7A4oPxS5jU2GShuI+WpyDGBx5rpyOcthcRj7SxajdhWeZ+KJE0owSlTHKnk9EChLaw6hLYqRTaKGrnz0HSQJTNJ4V2JHqWsr+8Ul+cM89x73PtW9/O8sa68n2957R555RxfUouy4xy6IhESdu2y+9G9E0MVeey/AtW/AzDqrOou3mTbg9O8F1F36M51Y7uHhgxsPJjWhdONHxapMSmE1Rhv/26SPb/4mLXhTkONGxqVwu09vby9KlS4lEIsdZw7Equz5ffrSPv77vhUHH/3jbGj702u6XJIvjlaaT3b+vbixXU001vSyqj9QTM2NIIbmk7VIeH36Mh4d/wDsu+DW+/HiFB3MWr7nsrWw41Ec0M0H8+1s59x3ns+2B7RSnshzaO0Dn6i6UvJYg/T20PExTx3dZb9zIjj0wODyN6+zl4k2rMZLWbE4HdgJJDI2FzziBKNLY2Ubz4jpGBzR9uwTlgqBvh8HhHoeutQ6r10WJJSx0ROMWs+T7Jolv/jzy8+vwr76FfOf13PMXT7L5t64ncTWoH96Mvuaz+E/fjr3zMWRiFW5iFZ7VBoFc2KURoTq4Jiw7eQU4C5QRAg1rZlZY67CbrAeFXEAuU+1zKTVTYyajKQ/LlhiGQEqBrHaim/k7DHcX4QmOlQDfDd0dg9vC/6faQ4trJH1G3B1HK3R7KLDVAm6PaplL0a12dQkHF0LNdHJRp+2cqamm05UViWFFYnPcHZOU81mCQhbTjmFGIghxGt+VE7k+fBDBsa4PnJkkBwvDSaLcBqQSIAWaAMt2iK9YS/dKh3J5iuH+PYz09TE1PEZmfJzM+Dh7nn6aupYGWru7aOtaih1LzHYI0RqciggBSEFRLsoqDJGUCxLXUfiuouQqStkFNkkGVehRhR8xd97/pXrx83FCCBLxGM2uQ106jURQrFSYyhXIFCpMlzwKrqbg+BQmiwxMhmVNtiHDINOq06Muas4fpM44PkwDsI84Pnw/hB2eT+B4eH4eT+TA0hCHsH2WRGoL0w2Bh+HYs/DDcCLIwMBwbQzXxi7UkZg80kpWE+BbldABYpVxY+MhBImOoxo94m1RJnq+wrmX301f/8JujlkXx5MfDwHHz77H5OhBxPVX0HTHT2iYyPA/v+nzD+9/jrbkW+mLnovnVGj3D9NW2U9d6SBpkWWNtxPyOwnyggljMUP2UoaiiynH24gYFmXXA2WQyIY5JEY6hZIJtA4ICJ0dHmFmhyJ1WrBDa02hUmE8l2cil2c8lyc1NMbrr7jihI/rXLIEZ2TwlJ/vZGWbBpahKDoOg1PTpKJR6uMxbPOlK2GRTW0Uto7iZ0K3ip9xKBzt5jhaM+6OIAgnN6YOQNYKMztizWFQqXx1DCNlzKDwzLHb/0pzc0RMxQdf08Xb1rXxLw8d4LvbDs8LI41ZindsWMRHrlhGS9L+pQQcp6JXx6ezpppqekXJVjYt0Rb6s/28c/UNPD78GHuzW3nzOb/CqnqbvVOSuysxlmx+Bx1f/zLGnh7Sz3ex+jUr2PXz3UwODBNNxmmRrUhxPUHdd9BykHTLt9mg3sWzz/uMTeZ55IldvObiNVh17ZCrgg4rjhAGkno0eTz6kbKZlq5mWpYYjBzU9O8SlIuSfdugf3eZ5escVp8bJbG4nkRXI+Kb75sFHHfduoty3uWuW3dx4x9VQce9n8C48UsYB+6FvX8FQKDiuLGVuMmVeOnVuPWrCBJtp+waeLkkRAg9QsfpEfDheeEApVzUlAsBOphdHDIQMQdyKDAMgWmBUhKpGpBKI50CcngfSvUik42IukVhG1rz5GcwTmubjLAji4wB2KHbwwtCh4fjExRdgkp4rYNwODgTaIohXxXvW02vfinDIJaqJ5pM45aLlHIZiplJiplJpDJCd4dxBgY8UoSOjbngoxpyOlPyop0AX2nETAmMrt5bWmhpg4SE1ciKVStZvsqnXJpkqH8XQ33PMzU6RGZ0kszoJHuf3Eq6rZGW7nZauzqwIgnMiIkVMahrPPbU0vOglJcUCoJiHop5Qblo4JZN3LKJDiSVgkWlsLDLxbQXgB+x0BWizOC0XSAx2yZm2yxqCv9f8VymswWmC2GYaa4SUPEChqbLDE2XATCkoD5uzTo96uMW6miwPQ98zJS6BGg/mAUfvuOC7xP4RSoUwRIQFaAkQioEIH1jFnjMhR+GYyO0wnCiGE6UCMBkOxDmS2nho+MBsSW/iXdgiKXdH2X3nv91zPZ3d/0OudEniFz1f9l1//eZGupHoMCKMnnDG2n45gMsni7zG3eXeOiGPVwp1uEjGFUrGE+spBSV3DMS4yJ2cJ35NB16mEZ3jEZ3jHX5J8lN1jMZW04mtpJJ1YwyTaLTJfAlRl0KIRWK5CzsKHMQRRJTNKBInhB2FB2H8VyO8Xye8XyeiXye8lGuhNUbNnLo0KETfgYODgywrL6e8uixGShnSgJBXNl4BGRyRYoFh7p4jLpo5Kw7yrAsjPpGcv+xZd7NuZ8OELt5E97wMJywVEeATIT5HH4FMuMwPRZObsSbQuhhnF0n54uSEhgxk9xP52er5e7vJ76x5WV6UcdX1DLoajT4X5vX8qfXnsOBsTz5ik/CVixrThAE+iXJ4PivoNpeqqmmmk5LjdFGBvIDtNltXNx6CU+OPMFPD/+AG17zYT5zb5btmQjPrVhM9LLX0/jwg5j3PkTj79xE93ld9D3Xz+Hn9xONR0kKgZLvxE9+Cy2HSTR+i03r3s3WXR7T2RI/f3QXl12yhmiyLQzFqmTAiCKUhSCJpoLPMJoShmylrTtOS6dmuE9z8HlBpSTY/bSmb3eJSza3knzsA7B68zzAAcwHHYC668Pom76C94P/jbHrTqRfwM5tw85tg+qkT2AmcdOr8OpW49atwkuvIog0c9Z912dIM+DDtDTRuEQe9bq11gQB6IDQBeJonIpG58LbtAh5iBARpIwitIccmkKJMYxIFKO+FVXXiIylkUoilUAZ4bU8CwGiQoow98Sqnhg3RsNBRcUncEO3hy56aCdAF52wykUJtBeceMU11XQGJITAisaxonESDc1UCjkK0xNUCjmCIMCMRDDt6Jn9XlRDTiGEH4EtKMV8/EaF1mJO1kcAHrOuD9BhtoBqYtmK17Ns1esplbIM9e9isG870+OHmR6eYHp4gr1P7KShrZXW7g6au1oxIuGgTSAROgxMVYZBMm2QTFdfi9Z4QQnXdyk5DqWiwCmZ+GULr2zjlEyckkGlaBL4Erdi4FYMCtPHglNpBGHZy2wZjFuFIB6W7XEqZhnbMGltSNM6E2YaBGTyBaZzJaaLDplKgBdoxnIVxnIVIIcQkI6aNCZCp0dD3MZaaHZYSoSUx4IPL0AHHrheCD48Hx14aCDAwTPLVGyJqJNHDi0apGcd4/wwnAiqCkBEXlF+fproupW0Lbue3r4vzHNz2HY7bW3X8fgTb8PPlGjov5YVh16P1HOA2xuuBmATsKlv4X12KQAXgv8hFvJDmEVoIrycrko4jMss4yLHmMwyLnMUReWY+wktaNBxmoIUTTrJxhXr+f7P7jvhunfv2cPSK9+CuN9CnkTnmhejMJ4rBAI+MMmZyQE5kdK/sghvyxEXw4z8jENxyyjQzPR/7j+FNc4NHh+vXl65Sv/KcrzBwoLb/0p0c8woXgUZ53S8uFyKX2bVIEdNNdV0WkrZKdJ2mpyT452rb+DJkSd4PrOFNy/+Fa5YavFgr+brAxHOveJyor37iB0aIPrth2j50JspTJcYOzhK77bdrLr0PKJCoOS78OPfQMsRIulvsmn9e9i606FQrPDzR3fy2kvWkky2hK3NihOADyqKoBpKShaXEgZtSFlPxzJJW5dmqE8zsEdRzmse+kYv6t1/SduSVr5z6/ZZwDGjY0DHtz6I8a7byaz7bYLB5zCm92Jk9mBO78XIHkC6OeyxLdhjR2ZIfLser24VXt0q3PRqvLpVBJGGl/bNOUMSQqCqtnhMOF7rQh2EMCQIDLRRjxsEVIolgql+tDgEkRQi2oiIJpGmhZDhepWpUKbEsCTKkFV3iKheJLJaOvNiBn1CSURMhgOKOhutj2R7aCcIXR4KmD7tp6ipplOWMkxidQ1EU/U4pQKlXIZSZpLC9ASGaWFGYijjLJ6iyWqpymxrW3lMa9uZDi8z4CMukyxfegnLl19CoZRhaGAngwd3kpkYZHJomMmhYXY/Lmls76Rt6TKaOzswLL/a+aWMruY4CK0QwkQpE0PZRM0obtTD9VwqXh4vmEYDSkiUVGjXoFIycIpmeF2FH04pBB+BJynlbEq5BQL4hMaKHIEfVtTF0xpLmUSiPso4cRmMISWNqSSNqTDMNNAB2UKR6XyZ6UKFTNnHCWCq6DJVdGE0fFwyEoaZNsQtGhM2Ues4jgQpEZZEELbZlgB+cCTjw/XwXRc8L3SqQbVcSRLIAD/m4MRz89epQbkh/LCtBjrWvYbic8N0L/k99uz737N3W7rko2R6ngcNXmSa0bW3Mdl9D40HrqNu8HUI/fIMEcq4s0BjvAo08qJ8zP2EhnQVaDTrJE1BigadwKj2BpVJk1hzkt7eE2dt9PX1kWiu47sNO9k41UmzTp2V7Xo5pOosYhtbGPnclgWX5342QOvHN5H72cAxEOC/gl5w+1+hbo6azoxqkKOmmmo6LUkhaY21Ml4cpzPZyaaWC9ky+jQPHP4B11/062w5NMFYxeS+aYfr33E99v/7F4zBw6Qf38/Sy5ZTzJYoTOc4sHU3qy9ejzEtUfLd+NGvo+UoVvLrXLT+fTyzs0yp4vHwo7t4zUWrqE83haCjMA5+PixfQaJIE1DEZQBFAYNWpLJZtBxef9N57P3m3Rirr6RlVRvf+dzWYwDHjI4BHY/cSvKSjzGRL+CllgNvC+/oOxi5PozMXszpPRiZvRi5XlRlCjX6BPboE7Pr9CNNVehRhR91q9B2+qy/Ry+VhBRhefnsLQpiCaCa3eFkwZkkCGLoWAuBlSIQcfySR5APjvR4r1pDhAzbc0olkBKUpTAsiWFIpCHnuEGOQBGlTm4mRoij3B4NEaTj4WdfeTM5Nf3XlxACO5bAjiVINjRTLuQoZCaoFPIQBJjRKIYVeWlKq45qbQvVkhd/TocXTyM8TUymWbHqtaxY+VoKuUkGD+1kcGAn2ekRxgf7GB/sQzymaO5YTnv3WloWL8WwBFo4BJQIKAAOgSiihY+UEFEGtqXwAwPXA8fzcH0XLVyshCRaZxwz0x74IoQec8DHXAiitai6QkxgxlLfyNi+8C/D8mfDT+cGodpRD8M6NgxVCkk6kSCdCMMXtdYUyxUmc4XQ6VFyKXmQK3vkyh594wUAoqasOj3CQNOEbRz/PVUyhLOYEF0AfDgevncU+JBiJjgJISW+VcG3KrRddBGFrcPkHzxM+83X0zfwj1QqQ1UXxzsYveVZ1l95GwOJOxmZvhMvOsnIuV9mZNVdMLUBcisQSHTPAdp+8BQS2HZZK6mNl+P4PqYMf0dzgcFfD55LSRv8SnqAK5KjRz5DWuPqMh3eBB2VgzRVeogGYTBLGYshmum3V3LI6GTES5I/zlg77IKToDmRpimZoiERxzwmjNjDr8K0SHsjA4cG8DwP0zTp7u5mzcrVdC5awsHDA+zu2UNfXx+u69LX10fDqnb+c9tTrGlv54LuLuyzCRnnvmLfp1hxsQyD+kSMpG2fsRIWtaiT4rPHujhm5Gccis+O0vyhbvzDBxe8z0kr8MPsDrcSlqpG6iHeAHaKU7JTnUGpOpvis2Mn3P5XspujphenGuSoqaaaTlvpSJqoGaXoFblx9TvZMvo0u6af5M2Lr+NXzotw2xaX+wajXLa+CfXmq2n6wX+ifvYI9ed0svbylTz7451U8kV6d/Sw7LyVMCVQ4lfxI3eg5TgyfgcXrn8/23aVyRVdHnliNxdtWkFrc30YeFUYnw0kBTknlHQibJdIG5IUI339nPvhD1CYLHHXLccHHDOaBR0330i8IUq+v+/YOykLLx2WqJS73h7e5lcwsgcwM3sxpvdgZvaicgdR5XFUeRx75NHZh/vR1tkSF7fq/NBW8oy9N8eTlUqRXNRG7vAwTvbYBMAXWn7KUiZEGwCNdPKQ7UMpM2w/G2+CWN0x4WVBoAn8AO1rgkDjFV3KudAtAjP9CjRKSYSsOj+kCEGIKTEsdaQ8Zp47JAQjR0so8aopMarpv66UaRFPNxKrujuKuQyl7CTF6UmUZWFFYsiXo2NPNWD5iOuDea6PaKqZFa1XsOK811OYHmOwLwQeuewYo4f2MnpoL1IqWhatpL17Ha2LV2OaJuCitTvb5jagRCCKSOViGC629vECH88LcDxwPNDawJAmSikkYXeoSMIlknAJe4YfkdbgVtQ8+FEuGpTyAt+J4LsKzwkvhQWaaEkZLAg/7KiLGfWQMoRU8WiEeDTCkurjyk6FqWquR6bskXM0JTfg0FSJQ1PhazSVmOf0qIuZx5QLzn8PFgAfXgg9dBCE4OMox4eVTNG47BxGb30mHMw+MzLr5li65KMUnxkJb//ZKGv/6I+ZutvGUU9D3XNg5qHlF1D/LHp6A6xeys7CEOsf6GXDw4fYH9sBq9bgCx8pBAnpsLl+gDsml/LdTAfnxKZoMo+Ukyht0C+aOGgspmxdTrFcpOD65HS1/MipXqqqU2UaEyaphnoaUzbpuEIaRcBH4WAKUIjjmQsBsJoaCXJ5PvjeX2NJ9xLKo3n83RncHWOs6GxizRUrsG+KM9B3kEDB+evWsW3bNnYPDdE3Ps5Fy5eyvLX5rANGQymSpqTiegznMhTcCPXxODH7RXZhMk1UYyO5Ly/sYphR7qcDxG/eRDA5fPxOKyclA6xqaYVbgtJweInUVUPJ68A4uzld86QEKnFsFsfRqrk5/uuqBjlqqqmm01bUiNIca+ZQ7hBL65ayoXkj28a28sDhH/Cuc36dR3vG2J+V3Dkg+IMLLyS3by/J3c+j7vwhLX9yE+e9YTXP/HgHudFJBnsHWbSsAzISJd6HF/kaiAmI3s7GdR9g++4yU9kKTzzdwwXnLWXxomaQJhSrgaRmAqRCMDeUtA9JM7GGVeSnXb59y7ElKsdTOe9y1y3beecnLsBI1p3cgF/ZePVr8erXzt4kvBJGdh/G9N4q/NiLURhAlUZQpREYfnj2vl6sYx708OpWos34Qs90WrJSKeq6liAeuZW6y/6ITP8A5UzmhMvPCOgAQICVDC++E5YcFarhZYmWMLys2iZYSoGUqlois7C01tUyGU3gh1CknPcJAh2Gp4b3CtdXhSFqFoYolCUxTBV2mEATeK/Kbuo1nYZ0AJ7jhy2UXwGdkI6WkBI7nsSOJ6vujizF6QnK+QxagxWNYdov4WBhwRc53/UxAz6i6TaWL2ljRXAVubERhvbvYLB3B4XcBMMDuxke2I1UBq0dq+joWkfLkpUoMz7zVSUcnrto7YTwQ7oEVhHfLOAFJSpBCdfL4WiNDhRKWBjSRmAikMe8RCviY0WOdCcI0GSmp6lLpwlcNc/5MbcUxi0rgkBSzluU8wsNNjVmxMeuhp/OD0UVtDfZtFdDKFzPZzqfZypfJlNyyVYCXF8znCkznAnLMJSA+rgVOj3iFvVxC+OF3GmGCjtHwbHgw/dZtOFyiltHZmex8w8O037z9QyPfid0cdz+LFCdzd86xtL1V7Ln8SLkVkFyN6R3gJmD5oeh7lka4ufzi8I4r3s8R/ePtzNk15HvakNWw0EvTYzzVKGRnkqKb04u4dfq91H0oOhCwVWUfcmRHscmMz/wEalpkTk65SDdzm4WMUjUr0AG/HyEQuNa8o3rKDSswVcWPnl8nQsDSmlCkViwS5GyInSkYpR+NsToN7cQzDn2l/dOwf0DyIRJ3eoGIle2o82Aq89fx2M9+8kUSzy8ey89Q8O8ZtUK0vHYid+LFykhBBHLDLuwVBxKjkNdLEY6HlvArXJyOrqjyvF0Up1WTlVmNLz4Hjh5GNsTHt/jTeGkh5086xMLR3dUOZ5ekW4Otzh7PnRay2sCapCjpppqepFqijZxKHcIL/C4cdU72Ta2lR1TT/DmynW889IEn/1xga2TUZ5tLbDhmuuIHD6MOTGBvPtpWt93Iede5rLj4ecZ2z+AHU/Q1AJCJDDE+/Hs20BMou2vcf6aD7Brn2R0ssSWZ3upOB7Ll7ZDoi2EHaWpcJZAWQhENZTUwUoENHd1cuefP3HSgGNG5bzLvf+8nfd86hL2PTWMpcqkG8M2qycrbURxG9bjNqyfnWcUbh4jsy8sdZkBH8XB2Utk8Gezj/fiS46Aj/Qq3NSK00oynwUY33wf7P8p4vAW6t51O0GfPuHyMws6qlJW2H1FB+AUYGIfGDZEGiDRFNpb5YlP7IQQCBV2fjkpGDLjCvECXMcn8DW6OrAKfJ9K3j/+Smr6LyNlSAwbXMfHLQfoQM+ebCtDHFMG9XJ34DEsm4TVTKyuEaeYp5SdopTPkJ8ax7RszGgsBIKvBB3V2jaxpJ2VS9pZcfkbyY0NM7R3O0P7d1DMTTE0sIuhgV0ow6StfTUdS86luWMF0jRBmQhZBQtz4Yd0iUsHX5Wp+AUqQZaKn8Xx82jhoaTAkEY1S8IAbQLGbJvbo2WYAYbpEEsdOwgKAqoApAo/igaVahiqUzQIAolbNnDLBvkF1q1Mvwo/3GoeSB0dMZfuJg9pumSLBabzJaYLLpmKjxfAeN5hvFqrIYC6qDlb3tIQt7BPpl1kFXxYkTip7lW4/TliF7ZS3j056+bYsOlLFLeE8EMmTSKrGyBt0tR1Dn3bf0GlkIXsOsithtRuqNsBVhbR8jBdv5piawts+L6m9b5H8d7xBsptjVR8QdGFt0R6WKtt0rrEnqljPiCYUhM1IG0Z1NkGERUCnqiMI71mphIXYBqHSWd3EZ/cheHmSY1uJTW6FS0kxbrl5JvWkW9YQzkyAzvqMGmYBztiLa3EEgmGP/v0CQe5Qd6luGWEyr4p2j5xIctXr6alLsXOgcNs6x9gOJPlu09vZd3iRZzfveS0gcPJSkpJImrjeh6T+TyFSoWGRJxEJHJip8/RMk3UAh1VjqdZN8f4i3VzHCVlhBMYWofujswAZAYhmoJ4teW88SIdKws+r0At0FHleHpFuTncEjx8K1x+cwiKTnV5TbOqQY6aaqrpRanOqpsNIF1Rv4L1Teexffw5Hjj8A25a/mEu7yzy84NwR6/JOecmmbpmM83fuJPg8acx1i1n8fktFKZL9G7v4/COPVgXbSAR5DFVEkN8AM/6KogpfPtrnLvyA5i9isOjeXY8P4BTcVmzegki3nwkpyPwZgm3wKKSdxnu38bbPnIO3/nbZ08JdEQSJm/9zXVs/9khHrl3kupKqUtL6psl9U2KhiZFXYNEnQr4MBO4TRtwmzYcAR9OFiPTMws9zMxeVGkEozCAURggcviB8LFI/GRnFXpUu7qkloFaIHSvqqMBBhCCjG++j/p33U6H51Hf3bng8rMGOiCs07WT4cUrh86O/DBEkpBoDU+AXuRBfB4MOY5ykyVqPo5fDiXqbVLtBu0r0hAIfC8IL06AU/HwKj6+p3ErVRCGRhBmw0hjTgnUS9w6WkpJJJEikkiRcMpU8jnyU+OUcxlAYEVjGNbxfwNeTgklSbV1kGrrYNXlbyE7NhgCj54dlHLTHB7YweGBHRimTduiNXQsOYfmluUhvBGgpUAoQJoIYSFFAtNoIgH4gYfjFyn7BcpeHicogSgiDR9DlkB41e+2QGiFxqjepjlRrYOUEIl7ROLeMcu0Bs9Rx8CPSjGEIp6j8F1F0VUUs8e+J0Lq2Q4wLVGPRQmHQOUoBBnybpFsxaPiw3TJZbrkcmAsfFzCVtUSl7CLS8xSx/0Mtq3YQJBzGTGyyPWKzus2URkt4Pfl8ccdtKeo/9h67OY4B3sPoo0c7bkI3etfx57H761uqAmZ9ZBdDannoW4nysrSejX0XWxTeKaTw1lJRjHn9zOgQYZHtbI2aLR8UpYmZkLcAFMKKjosN0koAykVFc/HISBmKZy8z6HYMsbbzsXuFiTL/SQmd5KY2IldHCE+3UN8uodWoBxvJ994DpnGbsqJDgyRxqSRWH0njctXUXh68KTDNP2MQ+HpQRo3riJwXc6TkqUtzTy57wAHJybZPnCIA6NjXLJiGZ1NDWf9u28aBoZSlByXoalpktGwhCVqnRwQOFkXx4zOiptjroQAKxZefDd0d5SmwgmbREtYvmqfuXLdk3VxzOgV4+ZwS/D194bnYYe3wK/eMf8c6IWW1zRPr3rI4fsvfvZtZh1nYl2vRtW2v7b9c69PR02RJnZP7qbOrOOdK25g+/hzbJ98jKs6NvOWC+t4ZjDDSNni3rE871i7lulNF1G/5SncO76P6vwQKzd1kJsqMH5ojIPP7mDFpRfgT+QwgxRG3fvxrNtATuGZX2Nl1/sxjRR9g1n2Hhim7Licv64bEakDYYQD5XIWrHh4popgaN8W2ldIbvjj808adEQSJu/8441Uclkm9vXT3qmYGgsolzSZqYDMVEDf3mq3AAl19ZL6phB81DdJUvWyWgpxkjKT+E0XUGm6YPYmUZnGrLo9zMxezOm9qMpEGHia64NDPwZAC4WX7Mathpq66VV4yaWhwwVILmpDPHLrEYAxoyrI6Nj8d/MBx9zl1eDVsTllLWdFyoaYHYaXOXkY3RuGl0UbQteHnaq+n2devh9Ur8/c8aSmM6sztV9936/muICyJOZRJQ5ah6VLs/Cj+rdb8XDLPr4XwhDt69AlpKsARIkwFHeOE+RsSRkWsXQjkWSaSjFPMTtFOZ+hlM9iWBGsSAxxnO9KUA22Ca9fnpP5ZFMHyaYOVr7mLWRGDjHUs4PhfTuoFLIc6nuWQ33PYtpRWjvX0N55Lo1N3Sg3HEkLHYQDaiXQslraYySxjSQJM8D1XcpehXKlTFkXQXgYSqOUhxZltKiALKPFNJ4IARbznB/quM6PWQlQtkfM9oilj13se2LWBeIU57pBTJyygQ4ElYJFpTB3wHqkwWqj7SGieTx7EkdlKekiZe2Rr/jkK0X6J4oARAxJQ7VtbWPCJhkJw0zNSJyGJSvJ/WQAuULw1TtvwzAMli5dyuqVq+gKOum3htjzs7309vbieR4ffO8HcJ4co/3N6+mtujm01hQ9yDsG+cn1lPxV1LU8T8ei57EbKthv2ouVG6e//3wykx3ELEHMgKgh+OrUSg64dWxSk3wwfqQ9qQZMYeJql6IviBHBkhLHDyjiE7MkwilQzmgcJ0rZ6iTT0YXZtRm7Mk5iIgQe0cwBIoUhIoUhmg6CayXJNawk17iKxov+EiEEuQcXamh7fOUeHCR+QSuNy5dx6MlJEnaEq849h4GJCR7fd4BCpcJPdz7P4oZ6Llm+nGT0bJeMCaKmha8CssUyhbJDOhajLhbFOJGjxLQwTsHFMaPcTweI3bwJb3QY3LPYaUUYYKer7o4CTPaBDLuwEW8OszvUi3B3KIFxCi6OGc24OU72WHPGj/VzAQaE119/7xGQ8ULLz7Acx+GGG27gU5/6FJdccgkA27Zt46//+q/Zs2cPLS0t/OZv/iY33XTT7GPuvPNO/u3f/o2pqSk2btzIn/3Zn7FkSZhWlM1m+Zu/+RsefPBBgiDgyiuv5H/+z/9JKnX2uhkJrfWrcgLL9322bdv2cr+MmmqqCSj7ZXqKPZjSJCIjfPnwV+gr97LS2sgVdZt5vtfnhwN1WMLj9zsGaC6UWf6fdxOfmqTc3cn0ey7B11l2/3yASqGCnYrRce5yAhdIxJApl2TzfyKNPL6bpjB2HWPTBoPjIaxIp2yWdzWF7UYDB7MyhfRKBEYMPedkf9WGN5GqW8ndtzx3QtARSZhcf/MGCtODHN7x7LxZG6ciKGYNCtVLMWvguQuEWUpNLOERS/nEUx6xlEc05r/okHHTnSZe6iNe6ide6iNR6sP0c8fcLxAGxchiCtEuguVX0/rGX0N+6wPHgowTaflVBDd9jb1PbSEzMvLiXvhpSHoVpFcEAb4Rx7Pr8cwk+gSuldORUwiIpAWx9Jnj/hs2bEC9HCGR/8X0SjvWB4FG+4QuDz8sawjcAN8LTWTaDzNhgkAjhEATsjkhBUJy5HKGZ4J9t4JbKuAUsvhOGYTAsCJI4wS1XK8gaa0pTY6QHTpAdrAXv3IkRFSZNsn2paTblpGs70AGEhUIZPUiCMdLCE0gQQuNT4CnfVzfpRK4+EEQVtMIgZI+QvkI4YJ0QFYQ0gHhgQgHLuE6jRCAaBVeXgh+nNR2gudYeGUbr2LhVY5cuxUb7S/8mxEIF9fK4llTuPY0rioe83KUgLqIZPnKNSyPLSex1aXt5k389Wf+Bs871pEyI9M0+e+f+BP2/e0vyK6V9OUP0N/fS8kTBAtss22WWbx4J80duzFVCM3UIYNM8SKcUgcgGHAT/MPkRjSCX0/vYK09OX97NLh4RIRNRISfUdfXKCGIqgDpBehYhMCMoBEYhsYwNcrQCMDwitQX9tOQ66G+cAAVHBmU++/+FuXCeUx9Z99JvCPzVX/DCirNLnt+8bN5t/tBwIHJKXqnwvbGUgiWNdSzNJ1+yXJ9XN/H8X0sQ5G0baLGwh16WtZvxJyMMv3dA6f8HOnrl+HWlxjdvvVMvOSTlgg8pFdEBB6BEcGz0nh2HYGKnnJ2x6KVndijAZm797/wnY9S+vrllJYoDh4+eTfLQsf6crlMb28vS5cuJRI5CRjmFsMSlJ9/9thly6+C674A3/vowudvr/8EXP5HZzSjo1KpcPPNN/OTn/yEr371q1xyySWMjY1xzTXX8J73vIcbbriBnTt38slPfpLPf/7zXHnllTz88MP8wR/8Abfccgvd3d3ceuut9Pf3873vfQ+Aj3/84xw8eJD/7//7/xBC8Gd/9me0t7fz+c9//pRf38nu31c95Fi/fv2LPpH0fZ/t27efkXW9GlXb/tr2n4nt3z25m+HCMC2xFp6ffJ6/eOIvkMLgD9d9mpSZ5vP/OUF/XnFhY5GPLTXw9u2j7WtfRXoexo3X4l7eTiGT49HvP4PneDR3t9G1fgVOMUDHkxh1FXT0dhBZCJownA8wOqHZdWACraGxPs4lF67CMFQYdlWcgPJ0+MOvjpzod6x4DXZkyXEdHZGEyQ1/vJFycZy+Hc+RiEVJx+OYx2knp7WmVNBMjQdMjfnh9bi/4ESIUpBulKSrbo/6ZkUyJRAv5iRJa2R5bNbpMeP6kO5R4GP5Vegbv4S468PHHijb1sPw9mPv/67bmeo7eHZKVU5FQTW8bKY1XawJYjPhZS9+Njo7UWIkc5BLLt94xo4nNchxZnQmj/Uz6ztbv/c60PPcH74X4LsBTsXHrfhoL8D39ZwymGr75Wr5i1ShE+TF/B4Evhe6OzKTlPNZAs/FsKOYkShCSIIgYGBggCVLlpyxNpVnWjoImBzsZ3jfdkb278IpFWaXWdE4bSvOpW3FeurbliACGba2DUA4GnyN8EEEABotwCegol0qfoWS5zAxMU66viEsCZCqCqN8EC7ggnAJRBkog6iE5S3CR2gd/t7MwA8MxBk0RGsNvivntMA9kgHilEzcypHn0vi4Vg7XzOBaGTwzh5bzZ5aVUnzkIx/hJz/5CT09Pcd93pUrV/KGN7yBf/3Xfz1mmRSQsCBhCpIWJCxBxAgh3eNqF0Se4TV1HlS5s19swhk/n6DYxnenOvlprp16VeGT7duJyGDeuoMqiEoYUSwsNBrH05iGIKYE0veQiTgyFsN3QzBiWmBHBKZ1pFxMBB7R6X2zLg/1az9ALl5/um8DlckMQ9ueWnDZdLHIE/v2MzQdOhtT0SiXrlhOR336tJ/vVKS1puQ4eEFAKholHY8RMeeDTHP5WlRd4rSfw8/kcfc//2Jf6ulJB6G7wymFXddmurBFju3CdjyZjVFU/PSdIEHFm9dG+3g60bH+lCEHHOvUOBktv+qMOzn27dvHzTffjNaaPXv2zEKOO++8k69+9avcd999s/f90z/9UwqFArfccguf/vSnGR0dnYUWe/bs4brrruOxxx4jEolw4YUXcuedd3L++ecDsHXrVt73vvexdetWbPvUJq5Odv++6stVlFJn7ETlTK7r1aja9te2/8Vsf1uijdHSKFpozm0+l9X1a9kz9Tw/H/oR71j6Pm68KMYtD1Z4eiLG9vYCG7pXMHX5FTQ++ADud+/DWv3b6LYoG686n6d+tIWxvmHi9Uk6utqoOHn8Qhr890LidpDj+NbttDZ/ANNs4bm9o0xMFXjk8d285uI12LYFydbQ8licmJfTMbTvcTpWsGDpygzg8MqTTBzYRywSoVAu43o+DYk4Uds+duZECBJJSCQVS5aGJxtaawo5zdSYz+T4EfDhuTAxGjAxeuRkzzAh3ahoqEKP+iZFInUK9f5CQKwVN9aK23451ReALA1jTu8Nw02n92L0P46868Nw45dgDujwr74FefGvEzz5H6gf3hw+vgo4Mv0DeLncqQWenQ3NtJyNVsPL8kOQH5kTXlYXBpee7uqrXQx+2X8DXsk60+/NWXmvVfh9Xkhah3DjCPyolsE4Hm7Jr+aCaFzf58jck5gXhqqMhVsgz5WUFkZdA7FUPW65RDmfoZCZpJybRiqFYc90MJKvyM4yAEhFc+cymjuXce6Vb2fyUC9DPdsZrgKPg9uf5OD2J7HjSdpXrqN95XrSbYshoUCHDhuq4ANPY7gS01ckZARP+ASiQkzYOJ5HmTJSCEzDRMkIQkRBg5oNPPVChwcOWrhhuQtFEA5ahC1NwyIMFQaezoadnsZnS4CyNJblkqg7FsAHflgGM7cLjFNqplJqp5JRuLKIa2WoWxYwVRilVCry/PPPs3LlyhNCjlWrVrF3716ElrS1tZJO2viT/SQtQdQ4vuvoEn8tXygPs3NglI9lXEqv81GxcaKdD+AXW7guupFn97+RCS/CPZkl3Ngwv3xAocJBu1dGGgpTGtgGOL5PGUnMMNH5IgiJGY+GXZFcTdHVmHYIOwwTtDIoNq6h2LiGUX0D9jN3k7j/L0kl6rA2/zV8+zfhwIPH3+/L3oC+6cuM7dxBKRvGyB6PndcnYrz1/HUcGB3jqX29ZEslfrx9B0tbmrh4+VJipzhYO1UJBPGojecH5Molyq5DOh6nLhZFVaGl37sbv+rAEckkRlsr3vAIOpcjCDT9B/vp6uwKna9HLQ+lX8bfBgUqFZaueA6Up6A0HnZlizeHIabWiTvO+VMV/KnKgsu8gsO+3gOc++YLjvv7L+2zODTWOnRtLCShQmBxsqBjBnAgwgD3hWTGTtkJ8+STT3LJJZfw8Y9/nA0bNszefvnll7N27dpj7p/Ph9+ZdDrNPffcw/79++nq6uK73/0uixYtoq6uDtd1+ed//udjHu/7PoVCAdu2ufXWW/nOd75DNpvl/PPP50//9E9ZuXLlKb32o/Wqhxw11VTTK0N1dh1JK0nOzZG209y0+p18+vFPs3XiYd64aDOdS9K8tqPEo4OSO/YbnLtRwqWvpXigl1j/Abwv343xx++lcbHP2ovP4fkndtG3tYd4XYJ0OoYf5PBI4+XfC/Hb0XIUz/gaDekPsOmcdrY9P0wmV+LhR3fy2kvXEovaYZaDssKcjkoO7AQgGJwFHRv4zt9uo5x3q4BjA255nNF9oc1VSUncjlB2HEamM6TjMVLx+OzJxPEkhCCREiRSkiXLj4CPfEZXoYfP1FjA1EQIPsaHfcaHfSA8sTUtqtkeioZqwGkscWrgI4i1U4m1U+m4IrxNB6jCIPG+57A334r4/Ab8q28h33k99/zFk2z+retJXA3qhzej3/53FMYnX34HxzES4UHbjEFQDS8rTh7Vmi51JlzlNdV0RiVECCzUcULtAv9YB4jnhlkg88JQPU0YTiFmO8Coah7I3G4wQoRhpFY0Rry+mUohRyE7STmXwSlkcUpF7Fh0wdabryRJqWjqXEFT5wrOvfI6Jgb2M9iznZH9z1Mp5Ojb9hh92x4jkqgLgceq9dS1LII5+1lDaAPwAVdCXlGfridwfVzXoeRUqFQcnKCCkBLTNFBSIZQMnRraACKIOb7nEH6Ezg8tnBB+iCIIt5r94YdvE+oo58fpgzWpNJGESyRxLADRGtyKwo4085rr38Ydf/4442MTjO8OeM3bl5xwvYs6FvPkfx6kceQykjLOuz5yCU/+5/8jP3niEkWJ4D3+RXym+cf8cxb++P9Iim/xKVyuUbFRkl0/4n837OAfn7+Rn08vY1N8gqX2/MGYIQ0qgUvRL5EghpIKC4Xj+wipiBkGfi4cRMl4FNMW4WR/Jfw+mLbAjsgQLgpACCrJRVSSi5gAmgd2UH/NZxGf33D8DXnbXyMe+Ttafv5ZAhnBt+vxrQZ8ux6veu3Pu25geWsLSxobeKa3n92Hh+gdHefQxBQbl3aytqPjrEMCQ0lSsSgV12M0myVfDruwxG2r+hugEckUxpLFiF/civG6P8IbOASZTLW2a+HlOvcKOuYbFhiN1VZHBZg8EN42k9MVqXvBLmwL6uUqYNAa/uOtMPDE8e+z/KpjJqJOeL8XAiJLLoVf/+EpgY73vve9C96+ePFiFi9ePPv/iYkJ7rnnHj72sY8B8IEPfIDHHnuMa665BqUU0WiU22+/fXZC4fWvf/289X31q19l9erVNDQ08JOf/IRvfOMb/OM//iMtLS187nOf45Of/CR33XXXSb/uhVSDHDXVVNMZkSENWmOt7JnaQ9pOc27juaxMr6Jnei8PDt7Hdd3vYfPFKbZ9P8tgyebewTzXt6aYftvV2F/5EurwYdS9W1DXnUfnOshNLuFQzwC7H9nOhrdehC01tpvBSjZRLr+PIPI1tBzBM75GMvF+Nq3rYOuuIQolh58/spPXXryGVCoWdupQBuTngg45D3Tc9y87edtHzqFc3sfgvl8giSNJIogihE3UnmnpVqDiuqQTSSLWqdW6CyFIpgXJtKRrRRV8BJpsJgiBx3jo+pieCHAdGB30GR08Yj+2bEF9s6RhTqlLNHYq4EOiOs7BrnZZmQEcd926i3Le5a5bd3HjH1VBxw/+kPiNX0b0PUTB6AR1tgPWTkPShEg9UHV3TA9AdjDsyJKoujvUqyOPoKaawrBSMO1jT9p1oPFnIIg7A0F83EqAW/bwfY1X8vC9AK0FCI0UAmlUS2GUIJJME02lKRfyjGWLIDTF6SmkYWBFY6hXQXaHVIrm7lU0d6/Cf4PH+MF9DPVsZ/TAbsr5DL1bH6F36yNEU/WzDo9Uc3v4GykFSNBK4tgBQVohhcL2LSJ+HM/xcCsO5WKZilvBqThIJKYKgQcqfPzMQPoI/IgeBT/cOfDDRYsSiPKx8EMrmF2HiXiRIbBCgBXx0QwzuO95rvnIOr5zyzaWLF7E4UOHTvjYw4cP09HZzMQBh6t/ay37tz3K2KEDSKmQiHDbRdiYXSKqLgcBQtIsklwTrOM/VzzLlwqS//YtQeInmrFfb8BfPkYqeZhPXvz37Bhfw8P9V7HEEhhi/iDTEiaOdij6ZeIiipQSE0XF9cGcAzoEyFgUIXlh2AHE6heR7tqA+OYHTrzz7v1EWMp5eAty/0+RpSHM0tAJHxKoGJ7dwGKrngsbFvGT/FKGnQhP7utl/+GDXLa0g8amjtnw77Ml2zQwDUWx4jA4NUVdLEp9PI5d3xACjG8caQlvvPv2sGU2IGcAx1HLX3GgA6qtjpLhxStDYTTswmafuS5sL51e4Hxt/0/hsS/ANZ+Ff9h0/Ptd89nwfqdS2nIGVS6X+djHPkZTUxPvfve7ARgdHaVSqfC3f/u3dHV18cUvfpFPfOIT3HXXXceUo3zta1/jvvvu49/+7d+A8DfINE06Ojro6OjgU5/6FAcOnHqmzNGqQY6aaqrpjKkh2kAkF6HslYkYEW5c/U7+6om/4pnxn3PVomtIpOp4++o839wFPxiI8trmMi3ti5l401tp+f53ce9/EPucFegVcc553XLymTzTo1PsfOhZNrz1YlSljFTTJBraKFc+gMNX0XIYz7iDWPR9XLi+g627himWPR5+fBevuXAVDQ2p8ACYbAtLVyoZMMKcjsF9j9O+At7zp5cw0r+LoX1bAInPND4TCEwEMRQplBEjrmxKFRdneop0IkEiGn1RpRxCCurqFXX1iu5V4clQEGiyUwGTc/I9picDnIpm5JDPyKEj4MOOirDMpUlR3xyWvERiC58sz20j66/cPA9wAPNBB6Du+hDxG79E9O7foexGKHVuxk92nfa2nj3NcXf4bvj+FidCS2usGWL1YCVq7o6aXrUSUmBIFQ7gFjiX9/3Q+TG3K4xb8XArAZ7j4zoBQdFDB5pAK5TRQLJxCb5TpJyfppzLowmwozEMO/KStsY9XSnDoHXZGlqXrcH3XMb6exjau53R3t2UslMc2PIwB7Y8TCzdOAs8ko2t81ciRJUzCJRtoZIWERJ4jotTcamUS1TKDmW3jHQlljAwhKJq0UALQvAhmZ0pFZjVkhVm4UfYrnbG+eGghVeFH8Vq3kcJLYIq/DAANafs5dThR9/2x+leDzfcvAHX9/nJQ4+d8P57e/bw5is2s3xjCyP7D7Hj4Qcxoi6m1PhotDvn51OEJRNHrgWXyk6eifZz//nTLMskedMjOVpvnWLohgtxN01ipPezrmk365p2Mzy1jHRmDUGlcd7bYGHiaBcVSKIygpRiFnRIUxExDPxs6AKRsfBLcAzscHxMK4QdqdZFLFr7OuQ3TyJse/9PEXd9mOBdtzG67UcEgz2YThHlTKMqUxjOJKoyhXImUZVJZFBB+kWsYhGKh1jOdpYCz7Ce+3kdE6UI39s1wAXcyxvUNuxIbNYB4lv1eNXr8P8N+NbJ500sJCkEiYiN5/tM54voRIolixfNAozZbfzG+zDffTuNrofZtWTB5a9Y0DEjIxJeAj90d4z3hDldkYZqdkfqjOR0nRUJEboqjleuAmHJCjp0aJxI934iLFW5/I8J6/OOo9MoV3khFQoFfvd3f5e+vj7uuOMOotHw+/h//s//4S1veQvXXnstALfccgtXXnklDzzwANdcc83s42+//XY+/elP88lPfpLXve51AGzevJmvfe1rvPGNb2TDhg286U1v4sYbb3zRr7UGOWqqqaYzprgZpzHSyHBxmIgR4bym81hWt5wDmf08NPgjNne9i0vPr+fRvnEOFRXf6Av46Koowbr15Hp7Se54Fuer38L85O8QREfY9Kbz+cV3H6ecK7L7ke2ce/kGgmIepCLe1I7yPkTJ+xJaDuKqO7DM93Hhuna2PT9CtuDwyJN7uOiCFbS11Ic2x2RL6OooTgI+qAiD+x6jd/cT2EZAOFcVASLVE1MXTRGHDBIDhI0VqcNzLUYzDhU3ecJQ0tORlIJ0oyLdeGRG1/c1mclgtsxlctwnOxVQKWmGBnyGBo4c5KIxUc32qLo+miXJlvQJAceMjgUdH0be+CVid32Y2EO/gdNwHqWua6m0XfbiWrydLSkztLKiwxOg6T7IHQodH/GmcMZH1Q57Nf3XklJyNlfmaAUzYajuEfgxNCWI18UI/BiRZD2VQp5iJkMhO4nnZDAtCzsWQ1kmSkqEEmf6PPmMShkmbcvPoW35OXiuw1jf3hB49O2hOD3B/qceYv9TD5Gob6Zt5TqCWANwfGBrWCaGZRJLxvB8D8d1KJXLOBWHsldGaoWJwghkCDJcjljgBehZ8MGsA4JZ+BFbAH6EeR+h+6NYdX6EmR+h80NU4cfcspcTD+T6tj/Osg0GzV3L6O3tPfF9+/poeHeCvY+P8ODtg8BrMewsqfRBkvXDKEMfGThqXa12qLbyDQII4Ib8Or6QeoR/vbxI53QTq3aO0/afz9HvXkKuawWFpj5amvbSVn8A6g/gZhfhjq0ncBqq+0dgoCj5FaSQRISNlGAiKbk+WIqIoULQIQRyTvvWo2FHrL7t5AHHjPb/FPnND9Dyrts4aAdkJodRLEeJBJIoUliz2y/8EqoyieFMoSqTqOr1WmeSpaVHeKjUzXP+cp5hPc/7K3hz4WE2FLYd9x3TCAKzDm9uWYzdOAtCvOp1YJ54AG8oRSoepX3VcsQjn1u4Jfw33kfD5r+fDzjmLv/FrRiXfAz3lQo5ZiRVCDQiKXDLYUZXfjgsV022hMd64xXoQBXixJkiJxs+Ord97AtklJxJ5fN5fvM3f5ODBw/yla98he7u7tllO3fu5Ld/+7dn/x+Px+nq6uLw4cOzt/37v/87n/nMZ/iTP/kTPvjBD87e3tzczH333ccjjzzCgw8+yL//+7/zzW9+k+9+97uzEOV0VDvbq6mmms6ommPNDBWGCHSAFJKbVt3I3zz1Nzw19jOu7HgbcTPJTRfYfO4XHk+MxbiiPc+GZIrcVW8gMnAQc2qK4Js/wvrgWyA2yEVvuYhHv/8I00MT9D7Xw7INKwlyWTwliTS0Y6hfJ+f8B6jDePp2VPBeLjinjef2jjKZKfPklh42rO+mc3FLSMljzdWcjnHw82DGyE2PYjc1zduO8MTLQmAhCWuwNWV8hhAmmMpiumRTcuuojzeTiCTP2gyoUoKGZkVDs4JqbpPvaaYng3nhptmpgFJRU+r3GOw/8vhEvUtr/Dk2XPFRIksu4Nu37jhuC91jQMdjX0C//e/h78/HmnwOa/I5AitNaclbKXVuJoh3nJVtfnESoXvDSoBfDS8rjIUnA4nWBcPL4okz136tpppeKZJSIC2FaYXQ1PcNYmmDlu4UUsqq+yON73VQKZYoTGeYHhmjkJmmUgwwrCgIaxZyiGoWSNgVRiCUeEUFmBqmVXVurMNzKoz07ma4ZwdjfXvJT42x78kwgHJ0+y/oWLWe9pXriacbj78+ZWAog1gkhutVgUelHF4HLoowMNNAgqcRXrXTi0c1DGSO62OmC+2s6+MI/Jhf8lIlJ6Ja8oIDs2UvFbQoVO/DHPgx4/w48l7kp0YoCYXneZimSXd3N6tWrmZxxxIODQ6wt2cPfX19uK7LwMGDaD1MfXuG6eEEXiXF5Mg6psbWkEgNkUwfxI7lQEiElICaZ47roIE3Oqv5sb2bv7wmz62FFhr6Run80VP0XXsZdvkcvnTgjZzT+SSXtj+NmTqMmTqMM9VBaXgtQaVu1iGSd7IERgxLmuExVWsKFR8sk4gS+JlqRkd0/iB2BnYs23Ax8pG/W3iguPwq/M2fQ93z8QUH+fKRv2PRRR+hZ/LruIzj6lEENkrHUCKFIoZQUXR8MV588bHrBzYBi6amebxnH1NF+B5v4anom3hDwxRtenQ+HHGmENpHudModxo4PpDSyGPyQbwF8kIm9/fSfNnHkYe3LLyNnz9O55nlV6FnsjteTTIj4SXww5yusb2hezfaCPHGak7XK+c36rg61e4qc0HHS1CuEwQBH/3oRzl06BC33XYby5cvn7e8paWF/fv3z2ZvOI7DoUOHZnM87r77bj7zmc/wyU9+kg996EPzHvuzn/2MwcFB3vve93LllVfy0Y9+lNe97nXs3bt3thvL6agGOWqqqaYzqjq7joSZIO/kSdkpNrRsoCu5lP5cLw8N/ohrum6ke2kdF+8d4clRgzv2m6zZqLEaWpjcvJmWO2/Hf3oL5rq1GJuaSTRNcf7rN7D1wWcY3H2QeH2S1s5W/OlpEAqjvp1U5MNky/8BxmF8vg6ld3Peylae7x1jZKLI1uf6cCoeK5Z3hCeZM+3ICuNhTsdJBFEJDARhWzZNgJYVLDtHxZtgODtA0m0kHWvDVAkkZ9/yrQxBY4uiseWI48NzNdMTPpNz2tnmMgH5KYeNb74Uc1k93/7c1uMCjhnNgo6bbyTeECXf34f3xtuJDNxH9OC9qPI48f3fIL7/G1SaL6TUdS1Oy6WnFwJ2tqWqQWV6Jrxsf9iJZdbdkaKhPc6y1nX4rs+LyAWsqaZXlYQQKFOgzHB2OJq0SLfW0bFyMaV8jtzEBLnxSSqlIlJZGFaUQMswCNX18dyAoKLRs82i9Gy2iJRhJxghXz4XiGHZLFp9PotWn49bKTNy4HmG9m5n7GAP+YkR9j42wt7H7ifV3DELRmJ1Dcddn2kYmIZBLBKtOjzcWeBRDnyUaWBGDRQyBB3BDPDQIQDxCTu+MMf1MQM+5oCiGcCOto6CHwHHwo9iCD5kmdB5WF2DVqRa28k78MFf+zWWdHYyMZSj/9kpnn5iiNalDbz5is00vDvBwMGDBFrT1NVG17rddHSPMtZnMDnZgleJk5teQm56CVY0Q6p+gHjyMFIF4aSBnLGswJXuCrYbgwwZWb54rckffauB2PAknT98gv7rX8+boxn+Zud7uOfAW/i9Nd+ivXEvVv0gVv0gztRiykNr8StJAu2R97NEpI0SCqqNcqbLJWxTYgNitIiRTGDEouGxVkiklAigb/uTrLjsD48d5C+/iuBdt3Fo71aWvOu2Y50ey68iuOwPGX7+FygRA2JordE4eGRx9RQSA0kUg3To8GDh8N62+jTXXXgBuw4PsrX3IEMluPNwI+csXs/GNZ1H3J86QLq5qjNkcp4zRM0tk3EyCAKMygRGZQJyxzzlkc+JMAh2X4e+8cuIuz500p069Cu9VOWFJFV4bmenwuyO3GHIDYW3JZpDd8crtW7VLcLDtx4XzHHdF+B7H10QWvHwLXD5H812EDxbuuuuu3jiiSf4p3/6J1KpFGNjYwCYpkk6neamm27in//5n+nu7qarq4t/+Zd/IR6Pc9VVVzE9Pc2f//mfc/3117N58+bZxwI0NDQQBAGf+cxnaG5uZu3atdxzzz1Eo9F5TpHTUQ1y1FRTTWdUpjRpi7exd2ovKTuFEIKbVr+Tv336b3lq/EGuXHQ1MSPBtRcnee7eAgMFmx8dzvCORY14nd1kLn0d6ccexv3Gt7GX/SFBfYzW5QYrJley79ke9j2xi1gyRrIuQTA9iW9IVKqDlP0hspUvgTGAiH0LP/8u1nQ1YhmSgZE8O/ccouK4nLOmMzwpsuIh6MiNodypcMZfmXASNdBh/FoUKaIoU+P7ZbLlUSreGIlokoiZwpT1SBELZ35eohpRwxQ0tRk0tR25zXU0VssSjHiS79zywoBjRuW8y123bOf6mzdScpOMjqSJpN9HtO09pPJPEh/4PvbY07MXP9JEqfMaykuuIYg2vfATvNQSMgwqs5PgVaA4BoVRYsvPw8Pmzj9/gs2/ex6JenncDhg11fTLICElsVQdsVQdDR0dlLJZsuNjlAt5lNDEGhOYVhzfDwj8+a1xPcfHc4LqbWFr3JmBhZCgZNX9oUQ4KH2JvmqmHWHx2o10rN7AgZ49WG6e4X07mBg4QHZskOzYIHse/TF1rYtpX7me9pXnEk2mF94/1ZazpmEeBTxKOK5LJQiQSmEaYWhpaOiojtRn4EfV9SECql1oj1/uMvu8SMAGbb8A/KiAKFEp5UlEY2RGDzBKgWisi+0/O0w57zLan2PlpmbG+vfjTY2SalmEUw6zAoyESevSAvH6p8mVk5SmllCYbsQp1TFeqmNSriFRP0Qy3Y9lV0fbQqKE4qbKRr4Q/TnPJUa4/9rzeOtdDvZUniX3PEbwjtdxTaKfu3PL+fTW3+ZTix+gqf1ZzPQhrPpDmOlDuNOdOCPnUC5H8KTGlAYSgSYM33U8jTAkhvbxpqYRThlpWiE3CiNCKORylIsFzr3pNtS3qiBj+VUEN93G84/dz1D/dvziNN1zQUcVgBzc/jMKE0c7GSQQQwABLh55KkwiUEgiSJ1EEQ8nN5gfNLq6uYXFqTRb+vs5ODnFzkODHBgZ48LuLjob6quTIVEwF4WX41UeaB/lZjCcqdAJ4kxhuAv87eUQ2kPt/g640yfdqUO/63YKB3rxspnj3+9VJQVWGnwPCtOQHUWrCE5Qh1PMv9wv7liZMbj8ZlgAzM06NRZqL7v8qvBxL4GT40c/+hFBEPCRj3xk3u0XX3wxt912G7/xG78BwKc//Wmmp6fZuHEjX/7yl7Ftm/vvv59iscjdd9/N3XffPe/xDzzwAFdddRW///u/z1/91V8xNjbGsmXL+OIXv0hdXd2Les1C65erl86Lk+/7bNu2jQ0bNrzoXvdncl2vRtW2v7b9Z3r7c06OraNbiZtxIkYErTV/8tB/ZyB/kNe1bubqzusB+Pnjo3x7ryRu+Hz6Qoe2IEZhfIjGO+8gMjSIXLkS9dH348gB0CZbfvIsowdHMCMWG66+BNuU6IqH0dKESibw/AGylS8DFaReii7cROApBidyHDic4W1vexvNzQ1IXSSXHcNzHbTnMnZwD811UUTgY9gxUs3dxJuW4laKDB94kpMBH1prKq6LEC6xiCBiS6SQSBHDEHUYIoEUMaR4absYGNEo9eecy51//gRTQycIvDqO6ttjvOdTl/DNv3yK8UNHTg7siCAa8UiIEZJOD3GGiatJ4moaq2kxcumlyEXnI17B36lYx2I8leTbn90620b4xv++iUR95LRBxy/778mZ1pnen7/s78/pbn8Q+JRzOfJTkxSmp3CdCpYdxY7FkEetR2tNEGgCL8D3NYGnCfwAz/XxKsE8OHLkFDRssSskSCmRxtkpgwkCTX9/P11dXUgpcEoFhvfvYmjvdiYO985z9dW3d9K+cj1tK84lkki94Lq11rieh+s5FMtlXM8lCAKUUpiGiVyo9fiM28PXYWWLF4QxHVUgMitZhR9HuT5O+HoIAGcWfnSdt554chH3/etO3vbfzqGQ66d/+1PHeazGzWbIZycgYoIXJTfRQm68Fc85UiYSSUyTrD9MPDGIED6g+aHdw4OR/cQDiz86fDFrvvM4ZrFMsb2R/mtew99nL6DfTXGuPcFvpHehotPYrbsw6w5X9yO4U13kh1dh+Gkiwp51RnrV7iBRQ2Hggx8gEzGkbaMJXUVaB2gdkGrt4rwrN6Me/Xv81/4BWx74HmMHD1Aul7CjEdq7VrDhDdeiHv17gtf+Ac8/eg/Z0b6T2rfhPvLD7BTphpBFW8gghgjiCG0j9PzcqrFikZ1j4xQ9D4CmaJRzm5qIn2KnthNJaBfTy2H5GUwvQ/PGy0mtPB/5DxuPvx0fe4biga0M9w5QSix/5QZ3noK01vh+mMnp+xrP1XgVF69UwXVdrvrdD5zVsWO5XKa3t5elS5cSiZxCNsjckpW5gONkl/+S6GT3b83JUVNNNZ1xJcwEjZFGxkpjRIywdOPG1e/kc1s+x5NjD3BFx1uJGjEu21jPowcnGSor7jrg8btrBHYizdTmzbR+5cvQ04P62TOYV63DEYfZeOUGHvneI+Sn8+z6+TbOe9NFKEPjTYyDlBjxJSTtD5KrfJlA9GIkv4Pp3MQikUJJSTKZJAgEXhBlzborKBZzFHJjeNi0Le4mkWomFk/Rf7CPTFlSF4lBpcCsvVga4UUZHA0+hBBELAvXk+SKPr5vkYxaoFwqwSAVQBLBECkMmUSJGFKc/WAsr1SiMDzCNb+9bnYwf7KKJEyu/q117N9ymMApEksISsXwRLJS1lTKimk6gKNyOaaAHhDkiVgOkaRNNG4SiQmicUE0JojEJNFY+LcVOYVWuGdIsUVL8GRi3j4p513u+pstLxp01FTTfzVJqYjVpYnVpXHKJYqZaXIT4+SnJ5FCYscTmNU2gUKEeR1KSRYavgVVyOH7IfwIu8NoPCcsgwl8HZbC+JqZKfrQ+UF4fQbLYKxonM51F9G57iIqhRxD+3Yy1LOdqcGDTA2Fl10/v5eGji7aV4XAw44lFlyXEALLNLFMs5rh4eJ4LqVyiYrrEOgAQx4FPGZa2xrhxmjkrOtjBnycjusjXCyBCOgIQsPAtsN0nhdC68P79tC786cg3XBQjn3UYwVmMoXlViiXshgRRbptkLrWQUq5OnJjrRQzDZTzacr5NBPGKpINwyTrD/MmdxU7zGHGVIHvtewncc0ldH7vEWJDEyx6cAvvviLOLVOb2Flp5NlKExsElPpfSyU6hd26EzM1hNXQT339QSqTnbhj67G8ehBgSIHna8qeT8RQGAr8fJFAawLLJAiCmaM106MD7PzFD1l90X+j9/EHUPlJOhrqmZqWWLEYU0OHeOZn97D+0t9iz89/xPTw4bAsa7bcKhzvn/goEKu+bwEaJ+yaQxGBgdQxpE4gdBShLTqjURbV17NnbJw94+OMl0o8fOgQq5uaWN3chFoIgp2yokAKn0VEW1tJbdiE/Nb7T/gIce8fE7/xSyzf/WH8nr+j2LiJUtNFlOvPQyv7hI99JUjrMI4j8MCrAg3frUKOKhQzBNgRm5IrqFRO/hzoJdeMY+PhWxZ2aLzQ8prmqebkOMPrejWqtv217T8b2z9aHOW5sedojbcihSTQAX/8sz9hsHCIK9qu481LrgNg395J/uHxAIHmv6/Psamumdz4MNbWrTT+6F5QCvsTH8ddFOAxSTlr8ch3f47ruDR1tbH6teugXA5PrFtaUNEIrt9HrvIVwMWQq7D1u6gUIFK3hPrWTu644w4Mw2Dp0qWsXr2KxYsXc+jQIfbs2Utvby+e5/Frv/Z+VJBjcuRAWMriO+CUIXDCoykAIgQeQlVLXcKTzCAIKLsOpmGQisaIWCbhaVCFQJfROkAKEyUSGLIOJapW17M4g7LQoP5EiiRM3vmJjRhBnuLhgdnbtdY4ZR0GnBY15WI17LSgKRc15VyZct6h5EbCE/aTkJBUwYcgWoUf8/6Oh3+bFmcEhrzQvngxjo5f9t+TM62ak+PM6kxuf+D7lHJZ8lMTFKan8V0HKxLDisUWdi2chHSg8YOq06PaEjfwAjw3wHNCIKIDje/NnLrq2TBUWQ1BFUpyvKc/2slxPJXzWYb27WBo73amh4/8/iEEjYuXhg6P5edgRV+4s0Ho8HCpOA5lp4zjeWgdoJSBqYyT31dzXR/BHNfHDAuqlmzMwo8FXB+B1rh4mBgIWSaQU2g5AXgLwg7fc8iODxEEHoY9v+bfc6yqu6MF3z3yuGhymnLzXv6l+U4CGfC+7AVs7BcsvvcpZBAwtW4pXz5vMz8udpOUDv+jaQsx6c0+XkYnibTuxEgNh/svEHhTy2H8PHBjoT/FD8J8aUOiAh8JmPE4ViSCoSRKhBcp5gP0QGsymQx1dXUEQUDJd6l4Lp4OMFBILQlm5jSqLYKlEvPAh5QnTnaY7cwmwnbBAgMR2EidROooQkfIVzy2DQ0xmg/b4sYtiw3tbbQlkyf+DJykEq2tdF1UBRwnm8lx45cQc0pbAmlRrj+PUuNFFBs3Edj1Z+S1vRhpPePOCC+eG+A6R4DGzFdAKRBKoOa0dwbITebI5XO86aOvUCfHjNziiTM2Xmj5f3HVnBw11VTTy6p6u56klSTv5klZKaSQ3Lj6Bj7/zOd5fPR+Lu94MxEVZcWKNBf0jPDMhMnXey1WbygSSzWQX7eOwr59xPfvxfnK17A+8TECs0IkVWbTmy7i8fseY7x/mHh9giXnLEUXivgT44iWFkyrm6T9AXKV2/CCvQh1F/H6XyXwp1i69PUYhoHnefT09NDT03PMazdNk84lXTy/46GQlM/Q8hgQuCHk8J0w28EtVacQytVHC6QyiBoKJwiYzOeJRyIkIxGUiqJEdDbMzNc5XH8ynPURUQxRjyFiKBFDiDP781w8PEBs0RLe+YmNLwg6jgc4IIQMdlRgR2HhpgThvtJuCd3/KEHfE1SmsxSCBgp+A3m1hJy5ikLQRKkkqJRDZ0gxrynmNfM92vMlFVX3hyQaXwCKxMO/DfP4p6AnA3tqjo6aanphSaWIp+uJp+upFIsUM9PkJyfIT04glSIST2BYp9ZqWkiBIVV4drrAJLLvh9Aj8Jl1gXiOX529rYahlv1qGYxgfhiqBKFPJmeaSCLF0g2vZemG11LKTTPUs4Ohnu1kRg4zMXCAiYED7Hzw+zQuWU77qnW0LTsHM7LwrGro8LCwTItELD4LPEqVMhW3gtYBhjIxXgh4vJDrY+b6aNdH9edwBnxkJ6ZpbGpCBBFU0I4WaQI5gZZTaJFHBAkE4fumDJNoXSP5iRG06yKMI94cw3SobztEuvUQxWw9ufFWStk0pVwachfz4YFzeLb1F/yk6Rk6l1yIumoTHfc/Rf2OXt4b/QnbOt/LqB/ne9ml/GrdkeNwUGyg2Hs5MjqG3b4LMzmK2bgPXX8Ab3IFwdg5mDqBDkD5kpRtY/g+suRhmAJ59GdOH/V39f+GUiSVIqpMSp5L2XdDAGRIDKEIdHhsClxN2anucVF1dyiBYYRuIlV1fMwcdWY7s+kwK0TjoUUFT46Ebeq1RUQmeU13A8OZFM8NjVFwHB7pP8iiVIrz2tqIvYgSllMGHBC2j73rwwQ3fZXiA/9AZPuXMMqjxCaeJjbxNA0InNRKio0XUWq6EDe25Kx3LFkQaMw4NPwjb6pUYRC7kuLV0UXlZPRCAOOXGHCcimqQo6aaajorMpVJS6yFA9MHSFlhPfOl7ZfyzdhdDBcHeXTop1y1eDNIyTsuTLDjxyX68hHuH5ri2iWtWOUk2bdcjf2VwxhDw/jf/zH2DW+izEEaOhKce+k6dj62nf5t+4jXJWhY1ESQz+ONjWO0tGCay0ja7ydXuQ3X30tJ3EXcehfFQoZly5axb9++4772pUuXUizm8Dw3PGjOsQejzPAyAz40IfAIvBCAVMGHCDzswMP3A/KZPF4pQjKZwLbDNHiBjRThWXygXQJdpqIHcBAIEcGkDjVb1nJqA4Xj6WRAx4kAx6lImFHEijciV7yRSKaHtv4fYB/+LtIPYZCWNuUVV5JffC0FayWlEvNcIaViQLk44xgJcCuhJbWQ0xRy/gmf2zAhGpNVCFItj4lLVrxmKa5I8J2TcLPUQEdNNZ287FgMOxYj1dwSujsmJyhmMxSzGaxoFDsaq7YefXFSSqLUwusJgmr5i3ekDCbw9LwwVM/z8coBpayDkHK2BCac9a2WwRy1+mgyzbILXseyC15HMTM5CzyyY0OMH+xh/GAPO+T3aOpcQcfKdbQsW4tpLzy7OBd4xGeBR4VypVIFHnq2be1JOTyEAAVazYCPqmagR6DBr7a29UH4IRgQ7txBeRTJYrRoIFCTaDlFIAsIP47AImLEcWN1ePkcCpOFbDLJZIZkMoNbsclOtpCdbMZ0E1x46GouOPQWDtT1IjsWoy7zaXvkGVqf2sMf2z/hT5rewRPlNi60RllpZ9FIgqoXIii04u9rxYiPYbdvx0iOYTbtxWzYj5pcizl+Pl7FIqgIlG0iPZ8gU0IECmkvXGYhtMbARLpq1uFhColpmESkTyVwKfkOrnYxlcJQcl7HrRnw4bsa1wn39gz4UKqaK3MU+BAYYatfXS1rERUCNQEqoKXR5g11cfYO++wfz3M4m2U4n+eclmZWNDYiT2PQvui8c5GPfu74LXSv+TvUvX+4cHvZR/8e63W/zW5nNXVMkMg+Q2z8aexcD3Z2L3Z2L/W9t+NGWik1XUSx8UIqdWvDMt4XqcCbAzS80KERwsw5QENWgYa5MNDQgT7yJQg4ArVm2jkfyUGu6ZdAtXKVM7yuV6Nq21/b/rO1/ZlKhmfHniVpJbFUOFD/xaFf8IVtXyCi4nzi/L/BVuHJ4AMPD/O9XoOk6fPnF5RYYjWRHR3C3L+fpru+DoD90d/FX12Pw2GkTrL9FzsY2HMQZSjOf+vFxFJxgkIOGUtgtDQjlcL1e1i97leoqzv9Xtv53Ag9z285+QfMgo/Q9aHdMuVCFolP0lTEbAtpVPM9pBWeEVWPvFr7R5W1RFAigSnrwuDSM9Ce9nhuhjMFOI4n4RaIHH6AaP/3MXK9s7e7qRWUut5OZdEb0cbCs6G+d1R5TFFTLsz5uwpDvOOwi8vftZJFq+v57km00J2rUy1d+WX/PTnTqpWrnFm9VNuvtaZSLMxmd1RKRQzDxI7HMcwzA21P9fUEvsZ1PHr29rC0ezlocKsAxPcDtD9TBlNtxFotgxEyzBgRan4Yan5qnOGe7Qz17CA3MTJ7u1QGzV0raV+5jpalazCsF841CLTGdV0qboVypYzreSHwMAwMw0CeiVJGrdGeZmRohNbWVsRxynU0BQI5AWIa8EEncD3N9MRhVLGCikZfMJxSB4LiVCOjow2ofMvs7dIq0Zx7hpVPfx/Tz3P7Fe/g9rrLaFBF/rDxESx8FCCUQgqFrPoihBD40cPEW3tQ8cnqTlMwvRp3dA0WcZIRA+G6rLnhwySau097N+UnBnju+9+m4rsEhB1eQpdA9Q5Cz5YFQQjXtA67lM8tdTkR+Aj3swYcAlEBAnIlxY4BmCyGbsaUbbOxo52m+AuXRM3VcZ0cy68iuOlr9D63k6XnnXvc5Qcef4qJg/0opYjGY0RiMWydIzrxNNHxp4hOPYfQR46hvhGn3HABxaaLKDVsQBsnUcLlgTfr0ghwK6FDI/CPlJzMAEglwx16DMCYMX1WAYaAI9k01VKjmYtQIRTJZrNMZae4+rc+/MouV6nphKqVq9RUU00vu1JWirSdZqoyRVO1rehrOl7Dt/bexUhxmMeGH+TKRW8D4IpNaR4/PM2oY3B3f8BH1rhE6xrIL/XIbbyQ5Nanqdx2O5FP/jE63oQrxlj32vPIT+eZGplk50Pb2Hj1JRixJEEhhz8uEc1NmGolpUKJfP5O9uz9s1PehtWrPo1pHD+ZfEEJwLCgavkVkTqiiRbcSpFpp4SjDJKGxNQV8ErgeKFbRBkIaaCkhVJhWUuAg6encf1xJBZSRDFlfejwOM32tAs5Os424ADQZpxS93WUuq7FmH6eaN/3iAw9hJndh7n97wie/1fKi95Iqeta/NSyeY9VhiCREiRSJ95e19GUS5pS4YgTxIhFWX/lYu78iydOCXBA6Oi454vP8Z4/veSUt7emmn5ZJYQgEk8QiSdINbdSymXITUxQymUIfB87GsOKxl6ywGEhwsEmQmHYkmjSnDcwOSYM1QvwPI1X8Y+UwVTCWfxQGsNK07n+cro3vJ5iZpzh/TsY6tlBYWqMkQPPM3LgeaRh0tK9ivaV62npXoU6DuCRQmBbFrZlkYhWHR5utaSlUkETOjxMwzz9fVZ1fQRKgymO26VFkEASBxoJxCQwhWkE2A1J8kGFqFNCRCOccEpcQqx5lM7mUe7J3Yec6mLN6CVYTpQR+zJGX3spzWNbedtzj7HzvHa21S3jp5W1XJvuRQUu+A5CO+Geliq8VFoY760jlcoTbd4D0Qlo2IWZ3os7uZJsZh2pSJzC2CCZyhPs6fnTU95Fq1f9BZazkni9ie1Lyo5H2fVwAo2JwkCBFvMG2BJxBHrIEF5orQk0eI7GOZ7jQwqUtJHSRgB1EZfXrCxzaEqz67AgW6nwUG8fnfVx1re2ETFObrCcHxmh/6ktdN30tSMgYwZwPLWFvp07oVJm6QLL+5/aQml8jFgshud55LM5SsUisViMSvMbyHe8GeGXiUw+S2ziaaITT6PcLPHRh4mPPowWinL63DDHo+lC/EgL2q8CDe8ooDEHWsjqx1Gpau7WzP71wv0p0KFxYy7AMAAVlrjNJsTOZtFUr4/+jJZBy1fl3H5Np6Ea5KippprOmoQQtMZaGS2OEugAKSRKKm5YeT3/9Ow/8cjIj3ht21VYysaIRbhxvcEXt8AvhpNc1jrOpobF2OUE+SvfgN3fizU5gfv1uzB+/b0EooSv8lz4pot5+LsPUc6X2PXws6x/wwXIeAI/nwVDYdQ3Mj48wprzfoXevn+kUhk66ddv2+20tr6dnc/8gsAPkMexSZ/kzsCMxFFWhGKljKNNUvEWoqZE+C741XwPpwBeESpeNUDLQEkbZIJABgS6RMnPIFDV9rQpDJGstqc9+Z/0uaDj3n/ewTW/ve6sAo55EgKv/hxy9eeQP/d3iBz6SejuKBwm1v99Yv3fx6k/l3LX2ym3vx5OIeHdtASmJUjWzX2vfAojp99hZvPvnkfg63CQVFNNNZ2SDNMk2dBEor6RSqFAMTNFbnKC3MQ4hmlixxMo4+U9HZ3J7VjoVehAz2t763tVCOL6+JUAP9DY8UYWn3M5i9ZeTmFqlLH+nYz27qSUnWR4306G9+1EmRYtS1fTvnI9zV0rUcbCuQtSSmzLxrZsEtE4jufiOA4lp0y5Uq4CDxPTMM4aJAr9EwmkjgMNBGKCWGQCJy1xpz2sigMLlIQEWldjQvTspPtldhv/2vlDnlzyA9409lZWjFyCV0wx2nIhoy0Xcl1xhLQo80SwiI2pDIvsEugA6buIwEX4FfAcFGAjyGfiULyCaHIKGp+FyCRG0/Po+h6y02sZ3hXh3F/5PXr7/+E0jvfXsvehb4ChMQxJwraI+IqS61L2PBztYkkjBBs63EtUo6TCAFiBCMKwU6kJB9vVHaE1YfmUC251FC9kNbdcCZRhIqTJkjpoTXrsHi5xcCLg4FSBoex+1rbFWFrfgCI6m5lyPM0DHY9+juC1H6f/qS3kRkLHUe44y/MjRxxJMy4iz/PIZnIYxRKxWIxIPEqp+RJKzZeA9rGzPaHDY+JprOIholPPEZ16joZ9/04p0sV0/EKK0U0UrKUIZMjaqpfZyicxHxRhMseBIeeDi6PCRGuq6XiqQY6aaqrprCodSZMwExTdIgkrbL132aLLuGvvtxkrjfL4yM94fcdbAVi9Os15+0d5btriWwciLE9MUl/XwHSlTPZXbqDxK/+Ov+1Z1FPrsC5eS5l+jGjARW+5hEe+/zDZkSkObN3L8k1rkJE4/vQ0QiocAZPj/XR3/Q579p787E5n5+/y3HPPsXPnPha3NxG1wg4qohpyJQ1xynXmUiqikRiu4zCVncCJJknEkxiRaqq61iHw8NwwzNQthvDDKyJ9L+xXoiy0VPiyREXk57SnrcOQibBbi3hhMFA8PEC0Ywnv+dNLyA+NUBx8CQDHUdJWHaVlN1Ja+k7MiW1E+7+PPfwI1tROrKmdJHZ+kfKSt1LqfDt+YvFpP8+pBK/O6MV0WamppprmSwhBJJEgkphxd2TJjY9RymYIdEAkFseMRF/ydtIvpNkw1AWYhNY6zALxgtAF4mnqW2O0LV+CW34z0yOHGd63g5EDOynnpxnau52hvdtRpkVz15oQeHSvCAe4C2y2lJKIZROxbBJBCDxmMjxKlRIgMI0ww+Ns7Le5sMOikVgkQi55AF0ogBsQqAgaTaD17MBTIVBCYMiww0nMNHl75QLutB7hh60/4MNNedoLXZSHWymPN1GKtnJRABuzmv6edTR278aO5wgMG7BBxxCBjwhcVFBBe2WKzhRGJoGVfxM6OQKNzyHsKWjczri/m9GBc+nu/J1TcnN0d/0eU4d245bz824PA0olEd+k5DpUvDDY1lLGvPIlPfPvvEyIOSBEg6reRhCGxgZaoF3wHPCqhRpCaIRUrK5P0hH32DlSIlcJeO5wkYNTBdYvNqmPxpA6iQgiCOzq+zRfM6Bj0abf4fBRAONkls9ufxV2uJ5HLpulVCwSrXayQSvKajWTDSvxEu/FKAySzG2hrriFZOV5ouV+ouV+2vk2rlFPNrmJXPpC8ql1YNrhZ2a2BTI1gFHTGVUNctRUU01nVbayaYm30DvdOws5DGlw/Yp38K/b/5VHRn7Ea9regCktMAxu2BRj109d9uWiPDQywds764il6in4HpnL30D6oQdwvnkXkeV/gtXYRoUBUo1JNr5+I1t++jRDewaIpxO0LV+MtCP4k1MIqRgd3Mua826gr/+fTmp2x7bbaW97B3d965/JZrPs7x+hrbWOpd1tNMeSBJ7GrQTowAOqwXVqpob7xANiIQSWbeN7BvlCFtdzSSZSROzqQd+IhBeq4CMIQvDhzwSbFhBuGcOVEARoAgJZwFVZHKmQIooScQyZrpa1HH/gUDh8kL6dz9GcTp9WyNkZkxC4TRtxmzYiy5NEBu4jevAeVGmU2IG7iB24C6dxY5jd0fZakKeePn+qHWZqgKOmms6ODMsi2dhEor6BciFPYXqKwtQk2fExTNvGjsVfdnfHyUiI8HdfKbkQA6FxUYKlG1bhue9gYqCfgzu3cfj57ZTzGYb3PcfwvucwrAhNnWto7j6H+o5lGKYRtimdCUNVYabDPOARC3Bdh7LrUKmUKZVLoVvwLAEPrTW+H8H0u/ECiaMGiPoZpCgjSGIpEylk2GZViGOOJeuMRax3O9luHuR76mk+EqsnuaxAXdNuYvdnGGm4mHxiMcvLETK7N2BE80Rbhog0jCEVaCXRyiTQMYThEfhFcoFDOnAxMw3ozBXo1Ci6aSfYGQ4M/SWXXvJD+g6e/PG+re0doYtjQQlMpTBVBNcPjsAO/1jYMcsbFDDH0RL+r/rvkQ7IiEDMNlvXvkb7Ych2UIEIiguaEgwWHA5kykwXBQ/v9eisz7GqNYtlKiSRsD2tiCB1BDEnKTU/MsKenywML060fCancya8M9AC6ZuowMDNeeTHcghZQJlRlGVjGAqhIEi0M9lwLRnjOpSfJ5l5huT0UySmt2F6UzRO3U/j1P34MkK+/nxyDReSa9iEb9Qd9zX+Msnxndn8urNx/182vfKPIDXVVNOrXo2RRgbkAK7vYqrwVPD1S17PXT3fZrI8wZMjP+ey9jcBUN9Rx1sWD3HvgMX3D9ZxQeMI3YlFuOUixYsuwt63l+jhAZyvfg3rD34PU5ZwGaNtWQcrp1bRs3Uv+5/aTSwVJ9Vcjwg03uQEZSUp5Cfo7vooe/b+rxd8zUu7P0axMMnKpTH6+h0mpssMj2QYHskQi1msWN7G0mWt2GYE3/VxnQDfDXDLPoH2w4mJFwAfylBEVZxypcTU1DiJRIp4LDH/hAmqCVxzWtnSPAd8OAjPQTl5lFtGOy46KOAxgasGEDKKNFKYsgEl4tX2tPNDsoqZDKTTp/q2njUFkQaKK99HccWvYo0+RbT/B1ijT2BNbMWa2Ipv11Ne8jZKnZsJYq2ntO6T7TBTAxw11XT2JaQkmkwRTaaoa5nr7phGa7DjcazjtGZ9NWi2DMZULFq9gkWrV6CDGxgf6Kfv2Wfo3/Es5VyW4X3bGN63DSsao3X5ObQuXUeqrZPAmwlDBdCzYahSCUxpYcUi6FgiBB5OhbJTeUHgYUVO7PILdBDmkgQ+fhCA1tX8CIVlRmitW8poMYqtspjFQWTCBeWDHwMW/r20TclbnfPoNUaZEHl+Jnfy5uA8gpSFc6XNxjtvoWh28Oyyt1NOr4FSglz/SvIDS4k0jhFtHsKMFUCAVgaGSlHxSmSEQVJFMQIPmbMQ2RaC+GHKLbsZHr6b7q6PnFQW1/FcHMdqDuzwAkqeQ8XzwAfzaNhx4tUcuZZzQIgxJ9O02hdCB5olSYOm+hj7Rx1GCx4HpzTDGcGKJkV7XRlD5RFCIbFQOonSMUQQRciZFc4JS63CCz2bsSuOdCKhGp4agB9oAsDzNL728YPQhKKFQMQNPBwcfwJDmUTjSSLx+WDSJ8V0/EqmO65EBC7xzA6Sk0+TmngK05mgbuIJ6iaeQCMoplaTa7iIbMOFOLHTd2yejFKNDWd1/S9GlrK46GsX4QXeC97XkAZPvf+ps/ZaHMfhhhtu4FOf+hSXXBJmkj388MN89rOfpa+vj+7ubm6++WauuOKK2cc8+uij/OVf/iUDAwOcf/75/N//+39ZsmTJMev+t3/7N+644w5++tOTbHF8mqpBjppqqumsK2klqbPryDk5GqLhAWbGzfHvO/6dnw/fx8WtV2BKE4TgjZvqeGI4x4Rj8L2D8OFVeWJ1DWScMrl33ID9//4JDvTi3/8g5luuJKCMT4ZVF6whO5llpH+YXT9/lo1XX4odj0A5wJ+YwKsEtLe/g77+L5xwdiec1fkVMlPjLG6vY3F7Hbm8Q+/BSQ4N5igWHZ7bfpDtOw6yeHEjq1Z30N5eD1rju2ELQ8/z8SpV8OH4aO2HLsxq6JhUMmwlK0RYvuK5ZHLTOK5DKpnCPE699qwWBB8+wncQXgXpO1ApELg5gsoE5WCweoKcwFBNKKMeJRMs6MF+pUgonNZLcVovRRZHiA7cS+TgfajKJPF9dxDbdydOy8WUuq7FabkoLG4+CXm5DIklad75iQv49mefOabDzI3/fROJlKoBjppqegll2hFMO0KioZFyPk9hapLC9BTZXBYzEsWOxZH/BTriCClp7lpKc9dSNr39esb6DtC/fRsHd2yjnM8zsONpBnY8jR1PsHjtepacs4GGjq5qkKWP5+ojYajlsHQCFBZRTCuCb7o4rovrOxTdElIIDMPEUIp0UwOv2/wGdjyxjczkdOjQqMIM3/eZASlKKgxlEI9YYbmCUiilUFKFnUTMgGlDYQcJmByGeheMYriBfox5fVcBJQT1Zoy3VM7nO5EneEzu5Ry9mEW6AachxcANV9D9jZ/y+m1f4Mfdr2X7+mvZ4Bj4lRilsXZKY+2Y8SzR5iEiDeMIGWCrCGW/hMAkYaeQdio87rlp6O1if+FRLrv+s/T1/8tJHO9P5OJY8F3ENBSmEcHxfMqeW4UdIQQ5adhx4qcIr1QYGBszJesTESbzHnsOVyg6ml2jDodzkhXNMWIWSOkgjREMBVLbKB1D6SSGjoJvQSCQngEeYccSQq+JL8OyKy/QuF4Ymhpo0EIjTZBqpjvMke0ysdDaxPMccplJSqUc0XiSaCyOVPOHl1qa5Os3kq/fyNCy3yRS6K0CjyeJFnqJZ3cTz+6mre82KtEOsg0Xkmu4iGJq9Ukf1xdSoqGBRSuXcrinl/zkJF3nnU/HiuX4nn/kI+oWwYyd9nOcaXmBh6dfGHLMhrOeBVUqFW6++WZ6enpmb+vv7+ejH/0oH//4x3njG9/I/fffz+/93u/9/+y9d3xc1Zn//779Tp9Rr5ZkW5YbLmBw6MWEGnpJQhpk00OyyZLdZAvJpizZTf3uJmR/qaSQAgFCIARCM2CqwRjb4G6rWF0jjabP3Pr7Y0ayhST3Bjvv12teI8+57VzJc879nOf5PDzyyCM0NDTQ29vLpz/9aT7zmc9w5plncvvtt/OpT32KBx54YILQumvXLn74wx9SVnbkxaaSyFGiRIkjjiiI1PhqiGajuK47/oV3TuM53LvtPkbzMV4ZepZTq88FQA76uGZekp+sh2f6g5xaFeXE8ia8gTBp22b0gksp+8ufMB96GGnuXNQZteToxBGyLD3nJJ594BlSsSRvPLOWxe88BUnXcTMZsrFBPD7vPqM5WppvJp9Lk88lxz8L+FUWza9hQVsVPX0JOrpixBIGu3YNs2vXMH6/xpw5dcyaXYvuU9CK4oFrF4QOy3KxLRszZ2NbLnbewnHHVuZERFlEV3WyuQymZRD0h/AcaH66KE0UPvwg2nZh4mfncY0Mjhklb/aA0Ynoyoj4EOw8thUE2YtQtCw/3vLiHW816babSLd+AG3g+UJ0R/RVtMGX0AZfwtYryTZdSq7xYhy9fNrjqMEgoaZGhOe+g//0f5wgdOwWOGSk574FZ96yh4hUokSJo4EoSniDIbzBEOHqWjKJOMnhKOnRGAig+/wo2tujLKMoilTPnE31zNkse9dVDLTvoHP9Wna9sZ58OsWOV15gxysv4AkEmbFwMU2LllI5oxkXoVgFxi0Yo46ZoRo2lqGgKy6mZZHPG+TNHLm8ge3aLDxlETvWrKZx1iz6ensRKKTEyJKEV9NR5ELVGVmUpi2xKQhQpkVIGSnyEQ3NrIThdCEaUE6AlAJXBMfDnmKHporMM+tZYDfwhtTNn6VX+Ji1AhmJbG05uy47jRn3P8sFHc8zrHpoP3suiwWLzFAt+dFyzHQQMx0kuWsmnooBPJX9aJpLzsogCRIeOYAr6SDpoAZIx8vo3vL6Pr059j+KY8q7gSrLqLKEYdlkTRPDtsApih1HYBwt88ssb5Xoipq0DxrEsw6v7soyo0KhqUzDcXRypguCAVIMQYoioSArHiSC5LQUWVXBsSUsU8B1RGwHwEUUBQQZ5GJV+33NAwRBQFE0ZFnFMg2SsRGy6SRefxDd450kdhR3IuefSc4/k6EZ16PkowRGXiEw/DK++Oto2V4qex6gsucBLDlAsuwkkmXLSIWX4ExTYn4q/GVlzFjQhvjc95lx+udJjKRx8fD7r7/EpZ9ahD8iIrl5WPW90li/B9u3b+eWW24piqe76e/v5/rrr+fGG28E4KabbuJ///d/Wb9+PQ0NDfzxj39k4cKFfPjDHwbgm9/8JqeffjqrV68ejwQB+MpXvsK8efMYmMYD5nBSEjlKlChxVAhrYbyyl4yVwacU6qgrksKVs67glxt/yTO9f+XkyjORxcLX0oJ5ERZ0DPNGQuXeDh/N/iiVgWqMXBZjwXxS27bg37KR/K9/g/5PX0BVa8jThagonHLBO1h1/9NkYim2vvg6c09fhOD1smvNowztrOCECz4wbTRHwWH9cjatexTLzE5qlySRGQ1hZjSEicfztHcN09OfIpXK8+qr7bz2WgczZlTQ1lZPZVUQQRKRJbH4ZVsUPqzdJQr3FD5c20F0FYy8yWBmiIAvQCgcRD6U3HRJAskDeBA8YSTqkGwL18rhmHFMcxQzsYt01kASBNCCCKKKiIqAiiCoiIKMgIyAhCAU34s/H3VEmXztWeRrz0JKdePpegh91yNIuSH8W36Jb+tvyFefRrbpXZgVSwvO7EXGBY673wc7nkTuWYP/+j+MV5i59FOLCgLH3e8ulNXrWQPv+V1p8lOixDFC0XVCuk6gvIJcKkkqNkI6NkI2kUD1eFA93rdFdAeAKEnUzp5D7ew5nHLFtfTv2FoUPDaQTSbY8sIqtrywCm8oTNMJS2g6YQnljU2THkRd1y1WgimIII7tYBgWesCHlcvw5+98gw9+63aammYyOhhD11VkWTwgYVuXdcq0CAOZAZTKCKJlQdICXx2IaZDje4gdhTQWSRDwKjLn5RbR7h1iSEiwStzMuc4CAFKz6ul95zLqH32Z9259gh97A+TP8ROetRnbVMhFq8kM1eIYOpmBBjIDDSiBUfSKblLBPiRBQpPGVuQFZEVn++sbOOfq903rzVGI4riMdU//I5g+JLeskOKBWKzqIRZLgIwnkUzDRLEjY5qYllVIGzoCYocoCjRXqVSHZbb25okmbTqHTAZGLebUaVQGZZpOuBhN9xPr30m0dyu53AguCfJihrSZQhAltECQyvpWwlWt5LNpOte/UPD0cEVAwnWlwr1AmtLcdLz3goCiashKQexIjAyTVQtih+bxTC12FDG1CkZqL2Kk9iJEK4N/dB2B4ZcJxNYgW0kig08RGXwKR5BJh08gWbaMRNnJWNr0ixn+sjJq57Vh9b2OmuzD7XgRIXIq935rDbmUyT3/taawoBF7ESnZh9GzHrf6BDTPkY3ocF2XrDV5XjmG9yAiSjJmZto2j3zgRs5josTnP/95lixZMv758uXLx8UK0zS5//77MQyDRYsWAbBu3TqWLVu2+9weDwsWLOC1114b3+/+++8nm81y7bXXcvvtt0847/e+9z3uu+8+EokEixcv5stf/jKtra0HdO1vpiRylChR4qigyzpV3iq6El3jIgfAeU3n8aft9xM3YqyJPs/yqrMKDZrGNUtUNj/jsiXu4YXBKBfUZ/GFyogP9ZK55HL0nl3IA4OY9z+Acv3VOGQxGMQTiLDs/JN58a/PM9w1yK5wOzMWzkT0ecnHBol2baS56VNs2XrrpOtsbvoE/f33MpK8A4+yAkWaOW2fQiGNJSfUsXCew66eUTp2jZJImXR0DNHRMUQo6GHO3HpmzqxGVXd/3QqyiCxPFD4cy8EpCh+WZZPLGCSSCbKZHH5vAE3TEWUBSRaRZOHQIi0kGUHyI2l+BKcOc9SLXB5ByA7j5kbATWOrHlwRXHcsWbdwvoLAUZz0CDIiCiIagqgUhZAxMUSa8PORwPY3kJr/cVJtN6H1PYOn80HU2Bvo/avQ+1dh+erJzngXucYLUCoaJwgcQEHouPs9+K//A+/98nJsw9wtcBTb+cMNJaGjRIljjChJeENhvKEwRnUN6Xic1EiU9OgIgiii+/zI6v6Xmj7eESWJujnzqJszj1OutOjbvoXO9Wvp3riBTHyUTc8+xaZnn8IXKSsIHouWUlbXMJ4CKRXHCqV4S7yCTqSmlge+exuu4/DUr3/Cuz73JfKJDEbWxsRGVkRkVUKU9m9sCethEkaCrGvjq6qA3gHIGaD7wfCClAZptCh2SOB40FSRoKlzobmYP6mreVbczDynnhrCAIwumoWUylLz/Ot89LU/89vgVZx4ioqkmPhqu/HWdGPEI2SGajHiZZjJMGYyjCDPwSjvIVKTwrfHc6KTy5CKx2lpvpnNWyZHbxbG+z8xKjwKQRDdIKrdgmo2oVi1CK4AlgPum3IDhLH6p2IhglIQxtMqJogdholhWQUR4AiIHR5VZFGTTjRps7U3T850Wd+ZoyIgMWuZn6QhoZTNYvnSFaTjw4wOttO/ays1jbMJV8/CFyynq7ODlCnh86q4Uh/O2CW6YmGsd4v9dGVARnDVormpVPi97iGKIIi7xQ7DID4SRVHVgtjh9SKKe58LOLKXRMWpJCpOBdfGm9hMcOQVAsOr0XL9BGJrCcTWUrfjp2R9M0mUn0yy7GRyvubxqixjERxW3+t0WeXICz9HQ1ML+f4UJ5xbz8DOBNUzg+TzBr6ZZ9EuNeLYIo3966Fh8REb613X5YMPf5DXhl6bsl0WZNZ+cO0BH/f0358+bXrL0qql/OqiXx3QfPGGG27Ya3tnZycXX3wxtm1zyy230NBQ8FAZGhqiqqpqwrbl5eX09/cDMDIywne+8x3uuOMONmzYMGG7xx57jLvuuovbb7+dqqoqvv/97/PP//zP3HPPPft93VNREjlKlChx1Cj3lLMruQvLscYjNlRJ5fJZl/ObTb/mmd6HWFZxGlKxrbyxjPPrevlbr86fu8KcEBmkJdCMJxAhkxhm9LKrqPj9r7FWPYu0YD7qglYc8tgkKK+tYOFpJ7DhufV0rd+BN+ynoqEKweunZ92zLL7so3R0/mjC6k5hVecqXnzpEiynm2T+F8hiS1HsaJ62X7Is0tJURktTGSOxHO2dw/QOpoknsry8ejuvrtlJc3MlbW31lFcEpjyGKBdSVsaED39Iw7Z8pFMZLDuNLIEseLBMByPrUCg1B5JSSHc5NOFDQNBCiHoY8tWQHYZsvNCkBqC4ClMIX3RwsXGxARPbzWMRx7WLk8CiHjIW7UFR5BDREAUFUVALnyFPjApBRhAO0gNDUsk3nE++4XykxE48nQ+h9zyGnO4hsOnH+Lf8Aj67FuG57+0WMMYoCh325T9CfuBTU7az6rtw5j8cV3m7JUr8X0X1eFE9XoIVleRSSZIjw2Tio2Ti8UKb14t4gKW9j2ckWaZh7gIa5i7ANk16t26ic8NrdG96nXRshI3PPMnGZ54kUF5B0wlLaVq0lHBN7YTxwBMIMtBe8P4A6Fy/lmhXO43z64kPjmDmbHIpEyNn49gOoiSiqIUxabphRRZlyj3l9CR7sD0BpKpy6Bsq5DrIMtgBsH17iB1JJFfGq6i05mqZK9exWezlAfkVPmKdh1g0LR0+dQFm3KTxjS28+9kHeLbsEqpnF757BQG0cAwtHMPOa2SjNWSj1TimRnagheyAiyecIFwdwxdJ0nbyOWD7qa6+ivaOH04x3l/Lrva/EPC9g2R6DY6QICevIyevQ0BDEeagum2ozEJ0tYLht2sXKp05VvHlAHaxbXeIvwqoskBehKxlYxgmYtHr5HD+fQqCQGVQpswv0T5o0DVkEk3avPLaZubNm8edv/sdsizT0tLCnDmtNC96J7u6e3jukSdpb2/Hsiw+8P4bSAzsQnBDCMUuFGxHiy/BBiEHOLiCU/BlKZqYFhY9xN1ChysDCpKkILkilpElPjqKnPbg80dQPT4kcT8qgggSmdACMqEF9Dd/EDXbQ3DkZQLDL+NNbsWT3oknvZPqrrswtIpipZaTqV/+YcTnvo+a7ENa+Dl++Zvf7u7/7DksWzyD7p4uHnv6hfH+3/iB96Gu+zW01x3Rsf54SwM+GMrKyrjnnntYu3Yt//mf/0lTUxMXXngh2WwWVZ34e1VVFcMwALjtttu46qqraG1tnSRy9PT0oCgKdXV11NXVceutt7Jz585DvtaSyFGiRImjRkgLEdJCJIwEeXAROAABAABJREFUZfpu06Hzm1dw//b7iZvDvBp9kZOrzig0SCIXLA3w0mCWkbzMw93wvlkjhINlmPkMVlMTiWXvIPjKi+R/+3s8//xF1EANOTqwSdM0r4X4cIKuzR1sff51PBecjC8cwHIchnaunxTN0dx0MyPRLjzCDSA/Td56BctpJ5n/GbI4C69yPrI02Sl6T8oiOmWRehaZNp27RunoHiWdsdixY4AdOwYoK/Mxp62e5uYqFGUvqxqCgKRIBCMBLNMkl8uieUXC/iCiIGObDkbewszaReGjMDMRRArGprKIJB2g8CFQWIXT/OBJQmYYcvHC56q/GMY7Jl7ssc+bKIghNu64IGJiuzks1ylOnChMjgQBEAvHK0Z+iKiIQkEQ2S2S7BEhgrRXMcQOziR1wmdIz/sIWu9KPJ0PosS3wYOfhWvvKKSgTCFkSN+fO/UBZ51XytctUeI4RJJlfOEIvnCEfCZDJj5KYniI1EgUSVbQfD5k5e1VXlFSFBoXLKJxwSIsw6Bny0Y616+lZ8tGksNRXn/qMV5/6jGClVU0nbCU5iUnUTOrFU8gyP3f+tqEYz15x49579e/gyiKZJMJ/GEN07Qxcha5lIWZs7CzhSgEWRORFWmS4BFQg/jVJGkrRTDoB8OEaAwC3kKEA+KbxI4YqieD5jhcYCyiQxuiTxjleXErZzjF72BBIHHhYrYlLFp37eCUhx6l84YVUDlxgUDS8vjrO/HVdpGPl5EdrMVIRsiOhsiOhjjrPbMIRMrY+vIQS99ZQ1PjJ9m6fbc3R1Pjp3Bth6EtJ9K67ELy+U66Ov6E4WzEcDfiksJwN2CwARBRxBZUaT6qOB9JKK5YuwBOoearWxRAxn52bLAtNNdEtSwMyyRrGhi5PKIAsrhHqd3xlBipkB0ijJti7P/fhigwu0ajJqywpTfP1m3buOjii5FlGcuy2LZt2wQjyTEURWFGUzNrNj8+4fNx8WK8n0z4WXDHCuS+WQwxQUgX2tyicakLtmkTT7cj5TU8ngCq5kcQ9UJa7NhYP+FdZry4riBgeBuIehuINlyFZMQJxNYQHH4Z/+g61HyU8r5HKO97BNt4Gfean+B0raGxqWW/+t/Q1IJtXYM087QjNtYLgsCvLvrVXtNVDobn3vvctG0Hk66yLwKBAPPnz2f+/Pns2LGDO++8kwsvvBBN08YFjTEMwyAYDLJq1Spee+01vvGNb0x5zEsvvZQ777yTFStWsGTJEs4//3yuvfbaQ77WkshRokSJo8aYAemm4U0TDEg1SePyWZfx282/5em+hzix8lSkYuinXBbkmtlpfr4ZnuoLs7wqyuLyAN5QOYnBXvLnvxOjYwdqdAjj939A/ejfoQo15NmFg8LC004gNZpkpH+YjU+/xpKLlqNoKv3b13PCO98/Hs0xVlFl8/pHEcUgPvUydPlMctbT5K01WM4OEvkdKOIcPMoKZKl+r31VFInZM8uZ1VJGdCRLR+cIfUNpRkbSvPjCVta8vIOZs6ponVNPJOLb67FkRcEnSWQyGfKGQSQcxhfw4Q2quFAwnTMcLNPGyNtYuUJlF8NyQSiYiRVSXaRiZO0+Bj0B0AMFsSOf2kPsEED1Fyeve9ldEChMUN50zDdRSIUZE0IcXPLYbhbLtYtiiFAoXygUhRDEYhqMgoCKKKhFMWTPtJiiICLp5GZcQm7GJcijm/F0/gX93o8hXHsH3HPTZKFjKmadV0pVKVHiLYDm9aJ5vQQrK8kmEoXojkQcx4qjebyoHs+UZbzfysiqOu7NYebz9Gx+oyB4bN1EMhrFtkxqZ7Uy3NvNM3f+gqHO9gn7D3W28/tbv8B5N32cyqaZ5FJJhFQSVZPxhwqVXIycTT5rks9YZJNm8bxCIa2l+JBe4Skjk0xhuBZqeRhMCxJJCPj28ETaLXbIUgpViuJ3k1zkzuN+YT1PiRtpc+qoJFjcXCR95Uls/a3BnJFdNNzzDP3vPxcrMHmFXRBd9MgwemQYK6uSHKpi+Xnn07K4GrCoakzx5+98kyu+8CU6d/3v7vG++gr+/J1vsuyy65HVKlR9Fs0z30tfxzpc18Fyd2G4GzGcjdgMYLo7MN0dpJ0HkahGFeejCvORhUYEae9VygQXNBxU28IwcmRzWQwrjwjIgojo2uBaBWHEcYF88X2i+eN4igwiiELRN2SiX4hfFzmxRad/1GQ4GqWlpWXKh/sxmpubSceHMfPTeztM268xYWZs4WN3teMJfXdxkWUHV7KxzDyp5AhyLo7mVZEVBWGPOcXYWF94FRY+QCmO+4Ux3lFlRqpPI1Z9JoJt4Y9vHI/yULY9gr3zeVIVZ5PvT+1X/0f6U2hlp+IXNPY+uzk0BEE4KN+NvXG4jzcd27ZtIx6PT/DdmDVrFqtXrwagurqaaDQ6YZ9oNMq8efP461//Sn9/P6eeeioAlmVhmiZLly7lpz/9KcuWLePhhx/mueeeY+XKlfz85z/n7rvv5v7778fjOfj5V0nkKFGixFElrIXRZZ2slZ3w5fzO5nfy5x0PMGoMsS66mhMrC1+GCAKLFoaZsyvG1rTG/Z0+GnyD1Hoa0QMhsokY8auuo+IXP8be8Dr2Cy8in/YOHHIYDCKLYZadfzKr7n+abCrLplXrWHjeSRhmlmjXJpqbPs2Wrf9Gc/PNjEQ7MI3dA70khvGpV6DLZ5EznyJvr8V0tmLmt6JIc/Eo5yGLdXvtryAIVJZ7qSz3kjcsOjpjdPbEyeZstmzpY8uWPiorA8xpq6epqRJJmnoiLogiPr+ffC7HUDRKPp8nFAoVyvsVPT40ZHwUImYLTvsOdlH4MLMWZt7GsV1c10WSCtEeosQkF+09Lv5NYke0IHaIEii+fYod+6IQkSEWK7qMfTh5O9d1iukxhXeHHK6bBtcpriSxhxhSMI0TBLE4OdIQA0EyJ3wI0cwRWv0HvNfegbAvoaMkcJQo8ZZDkhX8ZeX4ImXkM2kyo6MkR6IkRqLIsoKivz3/PyuaRvPiE2lefCKiJKP7feTSaf724/+hc/30ef5Dne3c9e9fomnRUs7+wN+h6B42PPEI/TsmPhS6bqHEqGu72Hbh3S2WmxVEAcPJY9gGiqQU0jZyRuFdnnqMcFwX0zGoERwuE+tJY9DJ6zhu5YQhoGdhNQO9Ah7LwFq5llx9Be40Y+QYbSeX0dCmkIn38cxvfzHe/42rnmRG6yfYtuMrNDV8ko2rnqRz/Vo6168t9P/9HyNYUYeqe+nc/AKK0IRCEz7pYmx3eDzCw3TbsRkg6wyQZSUCflRhXlH0aEUQpogeEgBEBFlFk1VUj598MUIzb5lIooQiywXRwB2LCnGLESFj6TBjUSI22MX0GMwpxJDC76Q2IJEd3sGcOa17fcifM2cOW7duZV3H4Y0wmJ6Ct4frOLhYiIKDKEt7+HVYFGSRsX5NoZwAu81gCy+BkyFwCh5vAOGlIXp3/ILTzz2Z1tY5e+9/axsdr42w4ameghlpRC+Vj5+ClStXct999/Hwww+PL5S98cYbzJxZ8K1bvHgxa9asGd8+m82yceNGbr75Zq699lo+8YlPjLc9+uij/OY3v+E3v/kN1dXVPPXUU/T29nLDDTdwzjnncPPNN3PGGWewdetWFi9efNDXXBI5SpQocVTxKl4qPBX0pHomiBy6rPOume/iD1t+z1O9f2FJxXLEsVUgr5frFyW57QWX12NeXhkc5Nz6BN5QGWY+i12hMnr2CiJPPopx75/QZ89GrarCIYdNHFWPcPIF7+C5B54hMTjKzjVbmH3yPPq2r2PR+e+jv/8+amuuYtO6v015zZIYwaddhe6cRdZ8CsN+DdPejGlvRpHmF8WOmn32XVNl2lormTO7gsFoivbOGIPRLENDSYaGNvPy6u3MnlVNa1sdweDU6rym68iWRSKRwDAMwuHwJKVbECiYyCmFlZAx4cMybWzTLQgfORszZxXesy6ZRB5REAumcyLjq3RIQuHnPcWOdBRyowWvDtU/oYLJkaAgXrzpHHsVQwqRILabxSUFrl2YHomQVlzKhrYSufT7iP+zl8Hz8h+WBI4SJd6iCIKA7vOj+/wEq6rJJsfK0I6SS8Qxshl0n/9tkSO/J4IoUtnUzI41q/nzd76B6zj73omCR8edX/p7Lr/lXzn7A3/Hjz5yA9lk4oDPfzCPyeXIlBcfR3KMTmgTgKRPIVk06GZk79fkCQRZ8aGPT9n/l+67l5u+fzuDQ3+mpuZKHv6vT4+3da5fy53/fDOX3/KvzDrpFO7/9hryaQvV60X3e/AEvXjDC/FFluEL2ljSNgxnI6a7BZcUefdl8vbLgIwqtKKKC1CFeYjC1B5cgiCiqxqaouwWO4w84pjYsa8FBNctihxFU1TXKYodY2JIISokM9LLjLYz93qo+vp6nnzySaJJe+/nPGKMpbuYh+dwI8WFKhk6+7Zx3rzz9rp5Q10jr7zURy5l8tCP1vPeLy/f6/b/V7n88sv58Y9/zHe+8x2uu+46nnvuOR544AHuuusuAK655hp+/vOf85Of/IRzzz2X22+/nYaGBpYvX44gCJSX766GU15ejizLNDU1AeA4Dt/61reorKxk3rx5PPTQQ3g8Hpqbmw/pmksiR4kSJY46FZ4KelO9EwxIAS5suYAHdzzAiDHA+uGXWVKxe7Cpai7j3B39PDHo4c+7ypgfGaA5OBNfqJzEUB/WaaeR3b4VT1cHxq/vRPv8Z1GlWnLksUkTLAuy9JwTeeXxl+nf1o0v7OeE8y4gn0mzZPEd5NMp/IEKYsPpaa9bEsvxa9dgO2eRNVdi2Bsw7Y2Y9kZUaSEe5TwksWra/ccQBIHqygDVlQGyWYv2rmG6ehLkDYuNm3rYuKmHmpoQbW31NDSWTzIpk2QZv99PNptlaGiIYDBIMBjcq5mZIICiShRS1HcLH0beZCQtEa72gQu2XUh9cSwHxwUn7+C6Lu7Y/EfQQK5D1MII+WGERBxRlhA0H6IoIojH7qFhtxhSnBBPcSl6qJpI9QLEu9+/94M9cHMpkqNEibcBsqIQKKvAHyknk4jTNxLDcRySw0PIiorm8yMdSpnu4wjXcYj19VDXNo8bv/sjnrzjx3uN5BijafGJnPvBj6DoOq8/9TiL3nnxfp6wmC5pOYwm44xmEmiCBoKAaBkIqSSCLI2bV++J7bik8haCAN1KDxuUbUiuwLnMwut6cB0FEDBckZe7fVyx5Wk0xyJTU0Zs0SymK+n66mN/ofXEU3n/N3/AM7/92Xj/k8NRNq56kiVn38EbTz9Jcnh3aH3T4hM56303getyz3/cynDn+r10WkAQfUhKBNlzDsH6NIHGIbzV3Uh6CsPdhGFvAgRkoRFVKPp4UD1JVHuz2JF9s9gxnQgnCIXy8PtIrgjUzaFrV89et+np6WFxWwNyagfFFY5JKTBHGscBKw+2KeK6Grgaji1jmyKWKRXeDRHH2fc1tS6rJlLjZe1jXcysnE9399773927i+qWMgY7k1z6qUU4toskH7t5jCzKsB/a5J5z56NBTU0NP//5z7ntttu48847qa+v57//+79ZsKBQArqhoYEf/OAH3Hbbbdx+++0sXbqU22+/fb+E5PPOO4/PfvazfPOb32RoaIiZM2fyox/9iFAodEjX/Pb4Vi9RosRbirAWJqgGSRkpwnp4/HOP7OHilku4Z9sfWdn7FxaVnzwezeEqChct9fHy4yZDOZnHeiSuVaNU+mrRs2myqTipq65F/f9+AJ2dWH97DOWSi9CoIccuHAxqmuuYc+Jctr66mc517VzwsZNZecfPWHT+CtY//gTnffhjjI5047p7X9GQxEr82vXYzjlkzScx7NeLrzdQpROKYkfFft0Lj0dmfls1c1ur6B9I0t4VIxrL0d8fp78/jkdXmN1aS2trLT6/vntHQcDj9WKZJrFYbDyq483u1ntjTPiQdRFfSJ0gkriA67iF9BbbwXHAcVwc28GxXSxTxzGD2OkEdnoEN5XAdSVcxYtb/J0J7E4bFgWhkD48nkp89CcReqiaypaTCwLHvjw5SuVjS5R4WyEIAro/gK+iivq2eeTTaZLDQ2QTcVzXRfN6UfTDb9R3tDGyWYxsFt0f4LLP/zNDnTt58o4fT/LkAKhsapngyZFNJKic0UzljOYDPq9lW2yJbiWTyeFxfFg5F3sojhuNIQV0RFXizTq8ljOIZyzmaU2s8QzSKfeQtfv4kHsKspTHcRRcR6cmXMbPuJ6vP/8zlJEkw7pG/7lLpzTm3Nm5hkBNFbWNC7nwk19kuLudZ+78CUOd7bx0372U1dXz0n33jvf/rPd/jPKGloKR69YNyL4q6hacRT6VJZ/JYObS2EYG20zjOhnAxXVSWPkUVr4Q1Dj4hgA0oJflCTUnCTWl8FblsNwuLLeLjPMIZtpHLtqEk2pFEVrwhn34ynQ0X2Hs3S12GPsvduyDUHkDz65+dK/bbN26lUsvWsFo16tg54veIMWnbLEQDYokHZTw4TpgGgpWXsEsvib+rGLmFWxz74+je8o5ouSgemxU3Sq+26iews+KbqN6emibdw6LT1hC3jB47OmH9t7/bVt459mX0ra85pinqhi2wcvvf/mAtlelI2euvGXLlgn/XrJkCXffffe025999tmcffbZ+zzu1VdfzdVXXz3hsw9/+MN8+MMfPrgLnYaSyFGiRImjjiRKVPuq2TyymTDhCW0Xz7yIh3Y+xHC+jzdGXuWE8t0mR2plmKtbevjldg9P9IVZVjmAXw3iDZdj5rM4skrs4supuP+PmH97FHHeXKSWJhRyGAwgEKZ16RwSI3EaF53GYHs7m597ms3PPQ3AohUXUFE1i6GBrfvZjyr82nuwnH6y5pOY9kYMez2GvQFVWoJHOQdJLN/3gSikh9TVBqmrDZJKGXR0jbCrL0k2Z7JhQxcbNnRRX19GW1sdtXVliEWRYMyUNF00JQ2Hw/h9vkOeqAsUhAhRFECZftB3CeJaNTipGE68Hycbx0XGUfw4rohlgW25BaN5pzB/ch13Dy+NwtxpzD9NFIU9fj58JdcOSOAYoyR0lCjxtkRWNTSPl0BZOdlUkszoKKnYMLnhIWRVQ/f5EaUjaUF45MmlkuTSKYKV1bz369/h97d+YYLQUdnUwnu//h2yiTijA30Typ8eDLIkUxuqYYe7A0UFHRkrHMbWTcz+BBZ+XEREEUTJRZLAq8ikRRvbdrk0dx4/9f2eTmmAl3OjnGw1I8qjSEqSJcEca5pO4Lv59/ClV35L+atbMf0ehk+ZN+W1rHvpYQDKK9oY7PLx7q98m7u++o8MdbZz91e/PN7/d3/l27z2ZA+hKhfTHMEWorScNL3Plm05pEfzpEeyZONZsoks+VQGI5vBzGUwU2kGX0sz8GoWxWsSbEoRbEoSqM+g+NIovo3ARqycyMguPx1vBEh0h8AJIik+ZM1XKIPs86B4VCSvhOyX8EZ0vH7tgMZDRfPgD0Zob58sbu1JR0cH/lAFSqQeM58FxyymvJhgGWAbBfFjD+HDdWUsW8M0tD1EC3WSmGEZMvsrjAiig6KZyJqJohqIcg5JNdB9Lt6giDcgonpsJNnda9GZQFk9kfJy3M4X8c08a7/6X/ZuP8KOp5HCpwHHbqw/UMHiSAocbwdKIkeJEiWOCWV6GR7ZQ9bK4pF3Dyo+xcdFLRfxp+338WTvgywoO3G3N4cosnRhmFU9CXZkNR7sClLrHaTeO6NQbSXah7RoMcmtmwls3IDx6zvRv/SPqFrluD+HIlVw3o03UTZjMXd99UsTrmnlr37Ge772LRBEogPb9hnRMYYs1hDQbsByeotix2YMey2GvQ5NWoqunIMkRvb73vj9Kgvn1zB/bjU9fXE6ukYZiefp6Rmhp2cEn1elta2O2bNr8XhUBFHEXzQlHY5GyedyhMNh5KMQgi0AgiwjhishWAbZGCT7ip4dCgSDIErjKS+2W6yyN5ZG7BSM7GwbLKuwjVWw1cBxJxqqFYSXiZEhuw3m9z6RKm88AfG5708tcMw6D/vS/4f00OemLC/Lqu/Cmf8AR8nFvESJEkcHQRTxBkN4gyFC1dWFyizDQ6Tjo+C6aD4/qq7v8zjHLa5LNhEH4NwbP87de4x55930cbLJxEF5b0xHWAtTppcxkhuhzFOG4pdRZleiKSb2SBzbF8Q0RGxTwDJAECV0WSaVNymTQpybP5VH9VU8ob3I7PRMQlY9opxGlEe5tu51vpV9Bz/JXcbHXn+QmmfWYfk9xOc3T3kt6156mMXLYdZJbaxb2ctZ7/so9972L+PtZ73/Y6xb2Uvrskqyo+0MDW7dZ8lWSRYJVngIVuz9QdgybFKxHJlYjkw0y1BXAsGzA728E29tH7JuUtaaoKw1gWP3kOr1kej0E+8MkO2bplKLoCJKPkTFi6x5UTweVK+O6tPRAxp6SMUTUZFVGUGAOQvPZFfXLhzHQdM0mpqamDN7NnW1tfT29bF1+3Y6OzsxTZNdu3YxZ+GZvPHqY1i2jpkVsXISZk4q/ixiZkXMnISVkzENBdz9FFwEF0UzdwsYmrHHz7s/l2R70u13XRcznwdcbEfHcbzIgsbehJMZrcsQn/t/kOyjXWrEsiwURaG5uZk5rW001DXS3buLrdu20NHRgWmadHe207zpXuh5oTTWv40oiRwlSpQ4JngVL+V6Of2Z/gkiB8ClMy/h4fa/MpTrYVNsHQvKlu5uDAa4fn6S/1zj8tqIl7XRfvy1o4R9ZZi5NNlUAveyK9B3daJEoxj3/gnthvegUYNWO5Oy5lMY6uzkrq9+acqSen/48j9x7o0fpW3hRQz2bWQk2sFkV++pkcU6Atr7sezugtjhbCVvryFvr0WTT0KXz0YSw/t9j0RRoLE+TGN9mHgyT0fnMN39KdIZg9fWdrDutQ4aGyuY01ZHTU143JQ0mUxiGAaRSOSQym8dMKIEvgrwRCAzUhA70lFQNAQ1gCCLBfvQCXO4iZMV13GLqTEFEcR+kxjiWPsvhoxFgggiRDs3UHX65xF71kwUMmadh3P9b+hp30Tje36H8IcbJrVz5i2lSI4SJd7mKJqOUqnjLy8nl0qRGhkhPTpCNpVA1TxoXu9bNrojm0xQ3TKTpkVLx6uJVDbNLERwHEZEQaTaW008Hydn5dBlHRQZob4a2TKR80nUcKDojSlg5gQ8rkQm45DPupxoLWKjvI1uuZ+/6it5T/YyHDOEY/kIykkuqezkT+7ZVOdiXLH9WeofeQnLq5Nuntr4e0+hQ9OrJvS/vKGFYKXDyNAOdjz3VypbZiD5Ds/DrawWfK7C1XuWh58PUCxP24XhbiRvvw5SlGBjmmBjmoYzBjDiYZLdVYx2hEn3izhWBjDBNXAsA8eKYWUL6whT8f7/+i7VzW0AlFXCl7/85Unb1DU2suyUUyZ9fuZFH2Kwa4g/3rZhP3rpImt2QaRQ8yjFl6zmUFQDRbdQdBtJcw+6fLMgCKi6jus4mPkcZj6HouloHh+qpjKV2NG17RVmnv45rL43cGyRGz/4PhpmtDDcl6RzXYxXXuqjuqWMd559KWXv9tPd2Y6NiLH4g6gNi0tj/duIkshRokSJY0aFt4LedC+2YyPt4SbuV/1c0HwRD+y4nyd6HmB+ZMmElfraWeWc1THA08NeHtxVTltoEF/IjzdUjpHP4SAQv+Jayu+8A/uFF1EuvYTweSvIZlL85b+/u8+Send/9V9oWrSUc2/8KOVzZ9Hf9zrJeP9+90uWGghIH8S0u8iaT2A5O8hbL5O3XkWTT8Yjn4UoBg/oXoUCGosX1rFwnsOunlE6do0ST5p0dUXp6ooSCOjMaatn1qzqcVPSwcFBgqEQoX2Ykh52RAn8leAdEzt6x8UO1ACTErP3QBAFJHEqO7X9FEOKJQ7tsTQZB2wL4gP95I3VNF5/5+6UlVnn4Vx/J+1rH2RgKEF964lI7/ldIUWl2F5KVSlR4v8WoiiNR3cYuRqyiTiJ6BCp0RFEQUTz+VE07Vhf5oHhumSTSc678eP88guf4rybPk4ulTzkFJWp8Kt+qjxV9KR70KRiioVHg7pq6OhGyGSRfB4k2UXRXXQbbAViSQtFULgkuYKfh//ADrmL9dJmFtvzwJVxzAinqCavaml+vOByGq0RTuzYSOOfn6XjPeeRqy6b8nrGhI7axoWc/f6P8ZsvfZqz3/8xBFEiMbKD7WufJmc4JKMjhL3eI+63KQgiitCMQjM+6RIsdxDD2YThbsRyO1BDo5SHRilfACJBVHEe5JeQG64jM2KQHE2RTWQwMlnsfA7byBb8Quw0YJMaGcFS/8iWLf92wNc2t+02vJ7zkdSCv4Wi28jFd8Wzx8+6jazZEwurOS64ZiFc0xEKqxCFgRisPTw+BBlEeZ9RMxPumSii6h6c/RA7kiM97HzjWRrnnUlj/wbUdb/GNq9Bj5zKhqd6yKVMBjuTtC2vQdjxNM2b7sVY/EHcmkWlsf5tRknkKFGixDEjrIUJqAFSZoqQNtFF+V2zLuGR9ocZzO1i8+gG5kUWjbe5usaliz2sedqmP6vwdL9MSBui2tOAL1RGItqPNGsm8eWnUb51I3XXXndQJfV+/Y+f4fJb/pXZJ53LmhfuwrIMRIFCFRFB3OcYrUgzUKSbMO2OotjRTt56kbz1Cpp8Ch7lzGlLzE2HJIk0zyijeUYZsdEs7Z0j9A6kSSZzrHllB2tf3UlzcyVz2uoIhzyMxmIY+Xyx1GwDoqggCFksK4nrWpOOLwgyshzAdT04jonjDB3Q9U1AlMFfBd6ygtiR6IVMFGQdtMABTXImXecBiCG2U0yRcaPEe9cQfvedCM9+H/f0zzO482XyyXZEsThBVjwFYWPVd0sRHCVK/B9H1T2ouodAeSXZZIJUbJjM6CjZZLzQ5vUdXQH5EMilkgQrq7jiC/+GJxAkMTR4xM5V4asglo+RMTP41GI0Q9BfEDq6+kCWQSuE9IkShEISaddExKSOEGebJ/Ok+iKP6c/SFGsmIHgRRRdRVLgmnOS/B7z8+wkf5Cfm/1DT00vTfU+z873nY4anHk/HPDoaZy7kii/8G4GKcvo7trL1lacQEZB9XpKjCfRICj3oP2L3ZSpkoQpZqsLL2ThuGsPdjOFsxHC34JAg57wEyktQoxKunUOVOB/ZnYNhyOSMHKZtIUsKoiDi9ZQz68RTsa0c7e3/TT6//5E6mlZLddWlSLLOae+zicf2f2EHKOSOou4xKAeKqxBFocOxxkqogJUrrEpA4Q9AlArixz7mBOIUYoeqe9B0L8oeYkdypIddm1Yxc8EZ0F6H0Lwce2SIq7+wmId/vJFLP7WoYDIaPg16XihFcLxNeWt8M5coUeJtiSzK1HhryJiZSW1BNcgFTRcA8GTPA7hvWnHSaiJc2ZgD4LHeMLtSMdJmAt0XRPMFMbIprPMvJKNodP3d31FTXsmN3/4hTYuWTjrXVDQtPpEPfusHVM+eyY7NT4FrIVAYsw3LIpvLk8nmdr9yOXL5PIZhYpoWlm3jOA6uC4rUTFD/OwLah5HFJsAibz3PaPZ7ZIxHcNzpy9bujUjYw4mL67nwvNksbKsg4JNxHJedOwd55OHXeOSRdfT0xEkkUgwODeG4Ir29Mfr783g8rShKE6paRShUg6pWoShNeDyt9Pfn6esbRRSnyQ0+UMbEjuqFUDEHRAVSg5BLHJGVxD0RRAFZFlA0AU0XkNxBMsOv4pz6STIjr+LVopSVg+bZ4zoUTzEvtzTpKVGiBIiShC8cobplNvVz51MxowVRkkmNDJOKjWAZxrG+xP0ik4gz66RTyBR9Oo4UuqRT46sha2Vx9lxYKA9DdTkkU8V8wwKaLOLXJPKWjai4nKksps6tJCfmeSz8JKJsF8qMGiIVrsM5/iSmJPNPJ36cdEUZcjpP070rkXPT+4use+lhooNdzDrpFIYHd7HllafG21RFxnFhdHAEez8XQo4EouBDF08iKH+AcvkrBKW/QxdPRSQEGBju66Tsuxl1/gND+SWabx0+Tw5wMaw86ewQQ32d2LZNc/PNB3TulubPkM9keOFPf2DXG+sn/t4OukMiSCqoXtCDhQjPQA34q8FXCXq40O64YObASBdeVq5gfDrN/GBM7JBVDSOXJTk6TCo+ipk3GEtdHYvoME7+BDvfeJbONx4nndzGe7+8HF9ILVRRKY31b2uOWSTHfffdxz//8z9P+lwQBDZv3nwMrqhEiRLHgogeQZO03fm7e3DZ7Hfxt86/0ZftYFv8DeaEF+5ulGVOWRjk2f4MHTmNv3aHqNIH8fh9+EJlWPkstmuTuPo6lJ/9L+lL3kXZ17/KZX//Twx2dbDylz+ZtqTeWe+7ibL6Bp67606Ge7cz/5yTKW+owXVdHNcppEq4TqGkquviOg624xSFDRvbdnBtB6u4zThuHbLwfmSxA8N5Goductaz5KzV6PI70JUzEIUDzwlWZJFZLeXMbC5jJFaI7ugbSjM6mmH16h3IssiMGRXIUjmKUs6vfvUbZFmmpaWFuXPbaGhoZdOmbjZv3kJ7ezuWZfGhD30QQcge8LXsFUkuTG485ZCNQqK/IHYoXtD8hxTZcSDY2QFS2YHxf0952pLx2GGjNN6XeDuheryoHi/BirHojhEy8VEy8VFUrxfN4z1oD4IjTT6T4bnH/kZLczPSEfYXiegRwrkwCSOxu1S8IEB1JZgmDI9CJFSMAICArpDK25i2gyKJXMm5/H/uPWyR2tka2MYCZzau5WKbcI6QYH3WwxA+fnD6h/mHJ3+MFksy497n6XzvKTiyH9eZXHnixcf/gCdUwehINyG1DFXanXak+fzkEikSI0kiFaFJ+x5tBEFBFdpQacMVr8Smh7yzEcPZiE0vltuBRQfIIMoVaM4cLKOF11Y/xPzFK6htvIqOjh/uVzRHIYrjMn7xuZtJRgsRPpKqEGqoIdJYR6i+Glk7TJU8RBFEFdjjeI5dfFnFai5GMfojy7jfligV01yk8UF7PLLDdjByWYxcFlX3onu8yKpCcqSHN17qGT9N+xuP0b75BU675JO7z32cjvVOPo84RVrcdJ+XmMwxEzkuueQSzjzzzPF/FybVH+Kcc845VpdUokSJY4Bf9VOmlzGYHZwkcoS0EOfPOJ+HO/7K4z0P0BpaMMGbw42EuX5Oim+th1eiPk6pSBBQRyjTq/AGIySHB9Cqa4id+07KH3uYkX//Ktl8juBJy3jv177F77/8T5NL6n3tWwxseYlH//srdG3vxnVcBrZ3UdPaxPxzTyFSV7XPGDjHdQqCiDMmihTEDtd1sGwH25mHYrViWtswnJU49JKzniFnvYjEKcgsRxQ9hbQYhEIpV0EopsgI02oBgiBQXualvMxLPm/T2T1CZ3eCTNZi585BBgef4bOf/SyyLGNZFtu2bWPbtm2TjqMoCo2NM8hmJ7cdFiQZ/DUFsSMzXEhjSQ+B7DmqYkeJo0NpvC/xdkSSZfyRMnzhCEY2Qzo+SnI4SjI2jCTJaD4fsnL8lXg0j1LUiSzKVPuqScaSmLaJIiljDYW0FcOEeBIiBX8qXSlEc8QzJookUkM5Z3EiT/EKD7GKmWI9PtWDpBaeS98tD3N7TzVPCzUsPv89vPOvv8HTN0rdn96g+5qliHIOx9bBnfg7GOpuR/GpZKxUIc2jOKALkogiSySiMfSgH496/JjMCoKATAOy1IBPugDbjY37eJjuDhyiOGIU9OcRNQ+bt/4N3fd1mptvZsuWf93n8VuaP0M6Gadm0Wy0XV5Gd/Vh5fKM7NzFyM5dCIJAoKaS8IxaIo11aAHfPo95QIylrKACRdFhXPSwwTEKqS6ODU5+7K6M7ydKEqpUEDvyuUxR7PCMix17prEmDjQN5xghahqblyzFtXanFQuyzNzXpveUKzGRYyZy6LqOvkdZrh//+Me4rssXvvCFY3VJJUqUOEZUeavoT/fjuM7ucrFFLp99GY93PUZvZic7EpuZHZq3u1EQaGwt4/SuKM+N+nigq4KZwUG8ih89EMbIZTAyKbRTTyezbSvejh3k7vgVRCIgCJz7oY9w99d2TwDOvfGjjHSuJz24jQVLZjNz0Wx2bu+ja90W+rd10r+tk9q2FuafczLh2spp+yMKIggg7VMMKcNxTiad3UA88wim3YPNszi8gkc+HUU8FcdRcBwXCxvHsSal7QiCgCgKCBTfi8KIqkrMmVVJ68wKhqIp2rtiDERTRKNRWlpaphQ3xmhubsY0M1N6dhxWJKUQuuopK3h1JIuRHaoX1JLY8XahNN6XeDsjCAKa14fm9RGqrCqUoR2JkknEcWwbzeNF1T3HbXTHkSSkhij3lDOUGaLcW767QVWgrgY6uyGVAX/hwbYQzWFhOQ6yKHIWJ7LR3cmgMMJf3We5jncChaFhViDP6eEkz44G+a08k5mXX07rn+4j2N5D1YMhet+5DMkziijlcFwPgqsBhUofmqSTd3Lk7AxeabcHh+zxYKdSxEbiqNURpON0DJKECB7pNDychuPmMN2tRR+PTbhCFuTX2bT1U7xj+SP7jObQtFpqaq7glVUPEGmqI9JUh+u4pKIjjHb1Mrqrj+xogkTfIIm+QbpeWocnEiIyo5ZwYx2+isg+S7gfFGPChwzgLQR0OPYeHh9mUfgoen1QKC2vKQouIkY+h5nPo+mFykiSohQXit46/w9dy4I9RI4jm9z79uO4MB4dHR3lpz/9Kd/4xjdQ1QNTvW3b3vdG+3mMw3GstyKl/pf6v+f7sSAgB/DKXhLZBEFtYtWRkBLinIZzeazrUR7v/jMzg20T2h2vh3ctlHn1eZvujMKz/Qo+eYAabyOeYEHoMM085hVXo/34h0i7ujH/+gjB224joKoTSsrVzGoDI8doxzoErxctlWLxuSfRevoStqx6lV0bttG3pZ2+Le3UzZvJ3LOXEaya2tF9fxEEAb93ET7PQjL5DYymH8a0+sgYT5ATXiDoO5eQdiYIaiE6xHZx2B0dYjs2tl1IkbFtB9u0wAWH3WVVvT6ZE+ZVMce0iQ500trauleRY+7cuUD68OTk7g/iWGRHWaEKS6ofEgOg+UDxHXGxw7EL9+lwjiclpuZgx/vDdV+Ph++7Y0mp/0e4/4KIJxRGD4bIp9Nk4jFSIyPEo4NIsoLm8yPJx27qPfadftS+24EKvYJYNkYmn5lYLt6jQ00ldPVCJge6hiYJeBWJRNbEr8uICFzBOfyMP7FB2M4CZxZzaR4/xMUVI2xIeRk2Ff5cNof3XH4BjX96mIotG7ECfvpPPglRSnH5Bz6BJzR5rM6OjvDEn36GIha/iyQBRRbJjsSJeT2UBzSOeLmVQ0RAQxVOQJVOwHVtLDoLgkd+I/39f6K56eNs2frv0+7f3Hwz/d2byGWSCHuEqforyvBXlNFw4kJyiRSju/oY3dVLcnCYbCxONhand91mFI9OuLGWcGMtwZoqRPkIRsAIIghqMd0F0NgtergWWCZLzr2WYNmMgz6FZWUQhH2ng7zdv0MNw+Dqq6/m1ltvZfny5QCsWrWKb3/723R0dNDc3Mwtt9zC2WefPb7PHXfcwa9+9StisRjLli3j1ltvpbm5GYBMJsNtt93GY489huM4XHTRRXzpS1/C5zvMUUF7cFyIHL///e+pqqrioosuOuB9N2zYn1rOR/9Yb0VK/S/1/1gykhuhJ99DuVo+qe0EYSFP8ATdme28sO0Z6tXmCe2iZXKOP8PDiXr+1h2iztnAqJ7AJwYx0lnyqVFkzUPy9LNpfeIRzJVPIQcC9N76Zc696UP86vV1nPveDzH09W9Q942v0z/Qj+s6kM5COoVbWUnl0tkEZtbQ99o2Yh199G7aSe+mnUSaa6lZ3IonfDgc2SO4vBdB3IorP48jjjCaeojR5JMI1slgL0FgajNQ13ULkobrFr1D3OJnbrHcaiF1xuPtoaX1tL1eRW1tLY8++gwjw90EAir+gI6iHr3hQnBMpHwe2RxAtA0cSccV1SMmdghWH5I3eMz/D/xf4GDH+8P9u/m//rsu9f/o9d+2TMycQT4RxcxmcF0HWdWRVPXIrIDvB9u3bz+q50sbaQaNQUJyaFKfZdtE7ezH9npAlsnZLvGMTUYGCQEdkaW+Vl71beVB92kCIxr6HikoF3hM/phs5amREC2hGvKnLaP1uZepeWU1SdWlf04bnlDZtKH/A9EoHsE7vsIvOA6ukSaWs4kFNLQj7F1y+PEAJwEnsjke5Zx3fYyOzh9PGc2habXUVF/Kiy9djKn149geHMuLbflwLC+O7cUuvlPpJRCZgTffTC4aJx8dIT88ipnNMbS1naGt7YVSr+Vh9IoIWkUE6QAXrg8HNf19JDIvsHXblw9437Y5/4GsnEb3rv2vSvN2JJ/Pc8stt0xYDOvs7OTmm2/m85//PCtWrODxxx/n05/+NI888ggNDQ088MAD3H777Xz3u9+lqamJH/zgB3ziE5/g4YcfRhAEbrvtNl5//XV+/vOfIwgC//Iv/8J//ud/8vWvf/2I9eOYixyu6/LHP/6Rj3zkIwe1/wknnHDI5km2bbNhw4bDcqy3IqX+l/p/PPQ/YSRYN7gOv+pHkyar6OfY5/Bk9xO8Yb3Mqa1nTWpvDI2wYWWebkPj1fwc5tSnqfPVIlFPYqgPM5dFPeN04gP9hDa/DkD8z39mxgfezxVf+Dd002bwgQeo+8bXqampBdfBtW2cdBqlogLRXxAx5iyaT2JwhM1Pv0Lvpp3EOvqIdfTRcEIrc886CX95+DDcjSZcdwXp3KuMpv+GZQ/iKs8gaq8S8p5PwHs6onBwk4dwRSvtu3r2uk1PTw+hUDVr124a/8yjSwQDGqGQh3BIJxT2omkqggCiKBXSZETxME7aawvhqNk4ZEfBzhcc0OXDb7iVS6XI2zYnHsbxpMRkDmW8P1zfT8fL992xotT/Y9d/13HIpVNk4qOkRoYx8zkkRUXz+o5adIfjOGzfvp3Zs2cf1dK3LU4L22LbsFyLgPKmMq+NDnQPwNAwRIK4gog3mSeRK0RzAFzMmXS6AwxLcV6u2MKV7jnju5cD23pTvJb087fcLOYsVxiwLKpfWsvsF15BLY7J04X+66FRVBz8UhmCpCCKImIuR0aVkaoqqA97UeTjO5pjb8RHemhu+jRbtv7bpLbmpk/S3/8Q+Xw/guAiyRkkOYNCdC9HlBAJIAhBBNePmVZIRy3iPRmyIw5mOktyxxDxTSLBmkoqWhoob2nAGwkeFVEvl+xn5pzL6ej8wQGX0K2tvQzXlakor97n9odzrJ/KTNQaHi6U85uwoYM1PIxcPnEx8HCakW7fvp1bbrllUmp0f38/119/PTfeeCMAN910E//7v//L+vXraWhoIJlM8o//+I/jkR0f/ehHueKKKxgZGaG8vBxFUbj11ltZuLBQQOCaa67hD3/4w2G55uk45iLHhg0bGBgY4NJLLz2o/SVJOmwD1eE81luRUv9L/T+W/Q/rYSp8FQznhvGok8t5Xd12FU/3PEVXegtdyR00B1snblAR4d2zu/juRo2Xhrwsq0gQVGNUemrxRyqJD/bg2g7Guy7H7Osu7OM4DH/rW8z62c/o+ru/Gx9QLHEUyfUhiAqIIk48gRwIjK/0RGoqOfXdFzPaH2XTU6vp3dxO94Zt9Ly+nRmL25h71jL8ZYfqzi4R8i0n6F1GKvsKI6mHsewosdT9JDJPEvFfUBQ7DqzMq+atZMuWV/a6zdatW7ngghVs2fQK8USOTNYim7PJ5jIMDO0u9+v1yIT8CqGARiioEQxpaIqCpChIkowoSQiSVJg0ihJIIqIgFibX+zvBDkYK+bbZGKRHwEqD5oU3mdQeClZOIG8c+/8Db3cOZbw/3L+b/+u/61L/j0H/JQl/OII/HCFSW0c2ESc5HCWXTOA6Lprfj6LpR+VBUBTFo9p/SZKoDdSyc3QnjuAgiXueW4KGqoK3wmgCIRIi6FVJmzauC5IooqFyJefyC/d+XhO2cAKzme02FhYibJvLgr1sSc+iJ6+xKhbmvDPfgZY3Cb/2Oo2PrdrrtfnL6jHtUWQpg+RIOJaMq7nouRjppMqoV6TeH0BWjvkj00GRSfRQN/NKOjpvn/DQX3iov5renS8ys+b/YTtJLDuO7cQnvFtOHLv47jgpwMZhFNxRAAQf+H3gb5p4XtsUsDI7MNMKgwMy9PrwBqoJVzYRqpyBokSQxRCiePgXLtKJ3mmFneloafksrisc0f8XruviZidXrRO93kmRRjjOlCLHtjPPmjB/GotIcjIZ3ozg8Rzw98nq1atZvnw5n//851myZMn458uXLx9PWzFNk/vvvx/DMFi0aBEA73vf+8a3TSaT/O53v6O1tZWyskKa2Fe+8pXx9u7ubv7yl79wyimnjH/261//mjvuuINoNEprayv/8i//wrJlyw7o2t/MMf8fu2rVKpYtW0YodOzLNZUoUeLYIQgClZ5KBtIDUxqQVngqOLP+LJ7qXskTPQ/yd8F/mHgASaKltZzl3TFeSvh4cFcFM/xD+JQAXt2PL1ROamQQ3R9k9MrrxndLP/scW089DTsWg+JqmipUYjAM5JF8XpxkEiedQfJPTEkJ11Rw6nsuIdY7yManXqZ/awedr22ma/1WmpbMZe5ZJ+ELT/QYOfD7IhHwLsfvWUYy+xKx1CNY9gjRxD3EUo8T8V9I0PsOhP0QOyRZQ/cEaG+fXDp3Tzo6OoiEyzlxcQOmkUMQJBLJPKPxHKOJHKPxHNmcRSZbePUN7R60/V6FYEAh5FMIBBT8HgVJKlaHGYv2EEVESUSSVSRZLkSCSCKiJCEKYlEYERDEYqk4WSsalIYhM1qoyJIfOexiR4kjS2m8L1GigKJqKBVVBMoqyKaSpEdjpGMj5JIJFN2D5vUhvs1EqIgWIaJHiBtxInpkYqMsFyuuWJBI4QkG8GsyqZyFTxNxXZdGu5KThfmsljfyZ3cln8hegUfyIMoy5V6Vq8UUv90V4vF4Be+Y6SPx3qtRLRvf9r2Pdx7vAozcAIYiU6kHcJwEtp3GiRuIYopY2oMu2viUQqSiJMmIioIky0jSMX+M2ie2lSMVn/zQ39J8M6l4L7ZVGONlKYwshfd6LNc1sewktjM6rRBi23EcN4ukuEghEy1kFvdOAH1keY3s6O5jCoKOLIaQpRCSFEIWp34/kAWdxHDXlMLOdGhaLbU1VyCKRy69xnVdOm94H9m1b6qOIsvMe33DpEijaXmT+DEWb7HllOWT9veceCJNv73zgISOG264Ya/tnZ2dXHzxxdi2zS233EJDQ8OE9nvuuYd//dd/RVXV8dSUPfniF7/I/fffT319PZ/+9KcB2LhxI9/61rf44Q9/yOzZs/n1r3/N5z73OZ555plDijg75v87169fz4knnnisL6NEiRLHARE9gl/xkzbTBNTApPar51zFM91P057ayK7kThoDMye028EAV86L89pqh86UwstDOn5liKXnLUd9k0BhDAyMDxR2LFb40HEwh4ZoXXHjhG3NRIydL92L6PNNOVhE6qo4/YZLGekeYONTqxnY3kXHqxvpfG0zLSfOp+3Mk/CGDs2zQxAkgt7TCHhOIZF5kVjqEWxnlGjiLkbTjxLxX0zAsxxBmG5iLODxVdLV2YnjOGiaRlNTE21tbTTU19Hd08uWLVvo7OzENE26dnXS0NBKb89Wcvk8wYBMRVkZoljofz5vjQseo4mCAJLLW6QyJqmMSe/4dUPQrxEK6oSCKiG/ht8Lru1g5Q0cp1BuVxDAdQvu6KIogiQVJpSyXBBCZLmw+if6Eb0aopFAyI0i5lMImn8/xI69DPJvMcf1tyql8b5EiYkIoog3GMIbDBGuqiFTjO5Ij8ZAAN1XiO54OyCJElXeKhJGAsMyUOU3PVDqGtRV4bZ34ySS6IJMPJslZwhIUkH8Pl86hW10ExMTPB3axNW+i8fTJM8Iwdqkxa8+dh6VZcX5wxXvBcDs65tyVdwYGuKCS66d8LGRSrFp9fPYYgxPrg8popJWRcrDATRUTMPCzOXJZ9K4duGY0pjooSiFqMXjjDc/9I9VVOnd+eIBHUcQFBS5DIW9G647rjFB9MgbIyRHusmkBrCsUSTdQPGZSIqL6+Yw7RymPbDXY4qCtyCEjAki48JIeLdIIgYRBGlaYWc6xqI4jjjHabWeA6GsrIx77rmHtWvX8p//+Z80NTVx4YUXjrefdtpp/OlPf+Lee+/lU5/6FH/6059obGwcb//oRz/Ke9/7Xr773e/y0Y9+lPvuu4+enh4EQaCuro6GhgY+97nPce655+I4zltb5Ni2bRuXX375sb6MEiVKHAeokkqlr5L2ePuUIkeVt4rT689kVc/TPN7zIDfN/fuJGwgCvhkVXNbVxz19QR7uDrMw0ofq9+93KOD2s8+ZMhTQSHcjpX3I/vC011/WUM0Z77+MaFcfG1euZqi9m52vvE7H2o20nLSAtjNOwhM8NCdpQZAJ+c4g6F1OIvM8sdTfsOwYQ/HfEUv9rSh2nDxB7KhuOgmPtwqACuDLX55syFVdU8tJJ5006fPaGSeRTvWzef2T5PJ5RFFAVVQ0Taa60k915W7xJpuziI8LHzli8RyGYRNP5okn81C0AhEFgWBAIxzSCId0wkGdgE9DFAUcx8V1bVwbHNfGyucxc7liNQAX1wWEQple0dXAsBFjg4g4SLoPSfMUBkVBRJSEQmSIKNK44GI8/vqDvu+2nUGSvAe9f4nSeF+ixN5QdJ2QrhOoqCCXTJKKjZAejZFNJlE0Hc3rfctHdwTVIOV6OYOZQcrl8oJJtmXhmBaOaeJaDgS8iAPDeAM+QmUhMo6A16cjyjKCJHGddRk/Sf6Wl6zXWOosZJbUDBSeH2+YZVBZFtjv8X7HNOO9KIQR1RBuQieSC9DvDRF3UzSGHTRXAFcDR8WxRCzTJJ9NY+UNzHQK17YBoSB8KDKSfOyFjzc/9DfvEcVxJBAFFVGuRKESAL8HyosBfI7tMNLdT+/mdvq3b8fID6P4rMLLa+GvlPFVKmgBB+QMth3HxcJxMxhWBthbZIaAJPqRxBDDqVksXvqDfUZzHI0oDihEKzf99s4p01UOB22rX5p8zoNIV9kXgUCA+fPnM3/+fHbs2MGdd945QeSoq6ujrq6OefPmsXr1au6//34+85nPjLfPnj0bgO9///uceeaZvPzyy5xxxhnMmTOHyy67jPnz57NixQquu+465EP0KjrmIkc0GiUYPLRw7hIlSrx9KNfL2ZXYhWEbqNLkQeeaOVfxbM8z7EhuoCfVQb2/eUK76/Fw9nwfzw0b9BkqK/sjfIjJpmPTMk0ooGQFyY924eogS8G9rvxXzKjlrA9dwVBHDxtXriba2cuO1Rtof3UjM5ctpO2ME9H9h/bALAgKId/ZBLynksg8x2jqUSx7mKH4nYwWxQ6/ZxmCIGLkkozEnmLL1lsP+Dxz276BTz+RSDhEPm+QyWYniB1jkR0AHl3Go/upqSoIH67rkstZxMaEj6L4YZpOIQokkYNdcQBEUSAUKIoeY8KHf+rqA65bzG11bFzVh2P4cfIJjGQCdzSGK2sgKQiAIIiIAgSrexmJP8uWrQfuuD537m1UV112wPuVmEhpvC9RYt+IooQ3FMYbCmPksmTioySHo6RiI4iSiO7zI6uH38fgSOO6LrZpEsbPYLqbWKoPj+xFVGRERUYvi6DoOpLShDQQRezuRwsE6YwbCIqMKBXGglalheXaUl7Kr+Xu9F+4JfQx1KIRd6WnMGIf6njvOBaiICEEIwgjSSorZzGYq6PclagJWhjGMKY1ClIWVRfxhssQ0LAtB8vIY+UN8tkMllEQ6d2iOi8rMqKsjKdpHk3Gojn6+++j9iCiOA4XoiRS0VRHRVMdiy44ncRQjL4t7fRt6WBwWx+De2zrCdZQO6eJmrYawo0+XCE10TfkTaky4GA7SWwniZHspr//vn2W0D1qURwUhA7BO/XcT5BlJlh9TiXMQUGUe5MwBwVfjyPJtm3biMfjE3wyZs2axerVqwF48cUXqaqqYubMQoS1IAjMnDmTWCyGYRisXLmS008/HX8xqrqiooJwOEwsFsPj8fDHP/6R1atXs3LlSu677z5+//vfc99991FdvW8T2Ok45iLH+vXrj/UllChR4jgiqAYJ62Hi+TjlnsnlZGt8NZxadzrP9z7LEz0P8sG2z0zaxq0q491NXfy/bSrPDRyeL36PtxUz3ocbsjA9Q8hiEFGcbJC6J5XN9Zx145UMtfewceVLDO/qZ/uL62h/5Q1mnXICc05fiubb+zH2hSiohH3nEvSeTiK9ilj6MUx7iMH4rwuRHYGLEaMq9bMuo73jfw7Ybby6+l307nwRURDx6DqaphbFjgy5fB5JElFkZYLYMYYgCHg8Ch6PQl11ITLHdV0yWXMPf488o4kcluUQixeiP8aQJIFQUCcS1MfFD59XKUwUBAHE4hCmKuAPgpmHfBzyCbBNXEXHFWVcx2VgxyssOPtDtHccuON6TfW7jvgqz/8FSuN9iRIHhqp7UHUPwYoqsskEyZFhMvFR0vFRNI8P1es9qlVS9hfXdbEtE9swsUwDuyg4SIqCR/XSVD+H7nwfoUgdsqYjKTLCnv3wesFx8fUOElC9JA2LoGe3J8OlnhVsNrYz4ozySOZpLve987Bef9wYIaJVgqqBPYoyPEigrpnOmEvEX0koWIdt57CsBIYRwzSHsewYLg6Kx4vujxAUq7AtC9s0scw8Vj5PPpPBMg3MXBbXcUEUkMfSXGRlkhfZ4cS2ciRHe1iy5A6Soz1HLIrjQAlWRghWRmg740Ty6Sx9Wzvo29LBwI4usokUO195g52vvIGsKlTPnkFtWws1rUvQ/BPTuFzXwXbSE4xTY9FtzFv4xb2W0D0aURz7wsnnmfvaRK8Oa3i4YDK6p9AhirSueuaIVleZjjHxYawkLMAbb7wxLmr89Kc/pb6+nq997WtAofrM5s2b+eAHP4goinzpS1/i61//Ou9617sA6O3tJRaLMWvWLNauXcuLL77IJz/5Sd7xjndwyy23cNppp7FmzRouueSSg77mYy5ylChRosSeCIJAtbeaaCZa9GqY/PB87ZyreaH3ObYm1tGX6aLWO2NCu6sotM4p46S+BOsyh+aFMYaoakgJP1I8CAEPlj2IbaWRpTCCMP1XqSAIVM1soLKlnsEdu3hj5UvEegbZ+vxadry8gdnvWMycU5egeg8t71oUVML+FQS9ZxDPPM1o6nFMe4DB0V8SS/0Nb/h7B+42PkVI655iRy5vkM5kyOXySPL0YseeCIKAz6vi86rU1xZW9V3XJZ0xJ0R7jCZy2LbLSCzLSGx3eKcsi4SDeiHVpSh+eD0F4QNFA6UKtBDk4wi5BIKZA9WDY2cZ6d1Ec/PNbNnyrwdwD47eKk+JEiVKTIUoSfjCEXzhCPlMZrwMbWpkGEmW0bw+ZPXYPagVHuQNLMPAti1wC4KGrKj4ImXoPh+KpiNrGoqqUevamEPryVgZyrQprluWoLkeIZ+nbChOAg3bcZGK44tH1LnGdwm/SN3Fs/mXWKzNo0lumHycg2Q4P4AuefHIPgiGITpEsKqaATR2RlMsrA+hSDqSpKNpVTiOiWUlMc04hjGEZcVxHBNRVJFUL4oeQggWrt22rILwYxgY+RxmUfjIZ7LgOgiiiCQr4z4fh9MvajTageNKJIY7DtsxDyeaz0Pz0nk0L52HbVoMtnfTt6WDvi3t5FIZejbuoGfjDhAEKmbUUtvWTG1bC4HyMIIgIksBZCmApuz+W0gn+qed+xzNKI69MZVAIZeXFyI23iRyvFngmG7/w83ll1/Oj3/8Y77zne9w3XXX8dxzz/HAAw9w1113AQXD0r//+7/n5JNPZsGCBdxxxx3kcjmuvPJKZFnm3e9+N9/73veoqalB13W+/vWvs2LFClpbW9m0aRO33347FRUVnHrqqbz88stkMhna2toO6ZpLIkeJEiWOOyJ6BK/iJW2m8auTRYo6fx3La97Bi/0v8ET3X3j/nE9N2saKhLhmziib1hUGiEMNBQSQAkGc0RR6VT2KN4Jh9mHaUURBRxIDe819FASB6tkzqJrVSP+2TjauXM1o3xBbVq1hx0vraT11MbPfsQTVc2iDlShqRPwXEPKeSTz9NKPpJzCtPjZv+wfesfyRA3Ib35sxmSiIeHUdfVzsSI9HdqiKekD+WoIg4Pep+H0qDXW7hY9k2pggfMQTeSzLITqSITqyu1yaoojjgsfYu8dXiaAFC5EduSS4WQZ3rmbeGTfS0fHD/Xdcrz32qzwlSpQoMYbm9aJ5vQQrK8kmkySHo2QScZxEHM3jRfV4JkZFHGbGHtItw8A2zYJHkiQjqyreUBjdH0DRNBRNQ9a0KdMyFEQag428Hn0d0zZRpCkqZ2gatMzAl9tBeDhFHM+EaI55aisnqifwqrGBu1N/4XOhj6AWK3Ac6nhv2TbDuQHqvDMKD5CJOAwOUDGzlf5ElqCuMKvKv8dhFFS1DFUtw+ttwrJSxSiPISwrgWnGEAQJSfIhSV402QseL14KKTKOZRXSXAwTM5/DyGawTYN8JgOuiyAJSLKCLCsFb5KDFD5sK8e61Q8zo2nGm8r4Hn9IikztnGZq5zTjXno2sb7BccEjPjBMtLOXaGcvGx59nkBFZFzwKG+onvD3X0jTuWrqErrHQRTHW4Wamhp+/vOfc9ttt3HnnXdSX1/Pf//3f7NgwQIAVqxYwb//+7/zwx/+kL6+PpYsWcIvfvELfL6CD90//MM/IAgCn/vc58hkMlxwwQX8278VhKd58+bxH//xH/zoRz/ia1/7GnV1dXz7299m1qxZh3TNJZGjRIkSxx2apFHlqaIz0TmlyAFwTdvVvNT/IpvjrzKQ6aHa+yZTSVEk0FTJhT2DDI0kJ4UCmkNRtp999iSVfPbKJ1HelANopZKFiYaq4CZsrGgUtbkZj+ZDtiMYZg+mPYgshvdZ810QBGrnNFPT2kTflnY2rlxNfGCYTU+/wvYX19N62hJmL1+Moh/awCuKHiKBiwj6ziKeXkk8vZL+/j/tMz91jKmiOKY8T1Hs0DSVfC5POpshm8sdlNixJ4IgEPRrBP0aM+oLjmWO45JM5wspLkXhI5HIY5oOQ8MZhoZ3Cx+qKu0WPnxlhNU8pKLEet+gpfkzbN7yL/txD46PVZ4SJUqUeDOSrOCPlBWjO9JkRkdJjkRJjESRZQXd50dS9r/s5lQU0i0KgoZlmbiuW3jYVhQ8wSAef7AgZqgFUeNAjFErPBVUe6sZyAxQ7Zsm7z7gQ5jZSCS1lUQmi63J49EcAFd4L2CruZNBJ8rj2VVc7D2PXDIxabzPDAzRee45k8b7ppVP4a2unLBtLpnAJ/uJGzF8SpCIVgHBEAxHkaprCHu8dI6kCXsVyv2Tx3tBEFGUIIoSRNfrse0Mlp3ENIYxzBh5Y4CCQaYXSfIiivJ4FTGtmF3rArZlYuXz2KZZqOaSTWEaBnYmU4j4kKSi8FHw+TjcBpPHE4IoUFZfTVl9NQvOW046liimtbQz1NFLMhojGY2x9bm1qF69II60tVAzawaBSA2u49DU+Em2bt/tydXU+Ckc2wEOrYLH25ktW7ZM+PeSJUu4++67p93+2muv5dprr52yTVVVvvjFL/LFL35xyvYrrriCK6644uAvdgpKIkeJEiWOS8o95exK7Zp2lacx0MhJ1SfzysBqnuh5kBtaPzFpGyfg55y2OJf9vyeIWirn1qa5pDHJjMBsTlpx1pShgEp1Nevuf5DwnpMXd/eakBQIYo2MIFdUIAUCqHIVshjEsPoxrAFsK1VMYdn7ZE8QBOrmzqR2Tgu9m3eyceVqEkMjbFy5mu0vrqP1tKXMPuUE5KlCeQ8ASfRSFriUkO8cRoZeZf4J/zJtfuoYB1NeThJEvB4Pmq6Rz+VJZTJkszlkWUJRlMNSOa1gTqoTCug0NRSED9txSCaNPTw+ciRSeQzDZjCaZjCaHt9fVyXqB5/nhg99fJ/eHGP3QJrC/LZEiRIljhcEQUD3+dF9foJV1WSThTK02WQCx7LRvF5Uj3efD8GObReiCUwT2zBwAVGWkBUVPRBA9wVQdB1F0w9Y0JgKURBpCDQwnBsma2XxyNP4U1VE8LY2EXp1C/F0lkBgt8+WV/Rwte9ifp26h6dyz3OCOpenn/4bJ53+Tu5ZN8R3Ht2GLAls/vrFU4733upK5t76MJbt8o8XtHLNogrWPP84oiihSTrRXD8e2YuueSExCkMD+Ga2kjYsdkbT+DQZXZn+PgiCgCz7kGUfulaD4+QxrSSWOUo+P4RpDuO6DqKoIcu+8UUSAZCLkRtjuDAuONmmiZHLYmQzmPk8diYNjosgS2+K+Hh7Ch++SJDZyxcxe/kizFye/u1d9G1pp39bF0YmR9e6rfiCdSw6+x2M9HSz8uff5IovfInOXf+7u4Ru9RXc/63bOPWa91LVMgvlKKR8HChvjkgSDrHayP81SnerRIkSxyVBLUhYC5M0kpR5pq7Jfl3bNbwysJqNo2sYzPZS5ambtI1QU8F19Z38oL2MJ3o9LAqP4pf3Xo898cJqhNOWE/JOFlcETYVUEisaRQoUzDRFUUdXm5GlsaiOKJLgRZIml8GddDxRoH7+LOrmzqR743Y2PfUyyWiMN554kW0vvEbb6Scy8+SFyOqhrchJoo+gfiapeDfNTZ/ca5WR5qZPMjT4FL1Dvzzo87miC4pDzrbIZJ1Cydd9+HUcLLIOFTpUFBcDXRdM08YYfzlYlj2+fV9f237cg5uPyLWWKFGixJFCVhQCZRX4I+Xk02nS8RFSIyMkh4eQFRVZLwgJjm3vfmA2DFzc8ZQTzedDr65B1XQUXUdWNaQj9HAV0kLU++ppT7Sj+/RpH8qF+ioC8RTpN9pxdA1xD2HhBHUui9R5rDc2cXf6Qb4x51bihsB/PrJ1v67Bsl0sx+Wbj2zl/HlVVFbXMtjfg0f2kTBiDOcGqfM2IgRCMDQEVTVU+P30xbN0DWdorfbvt5ggihqaqqGpFXg8zdh2EtNMkDcGsawkjhNFEFVkyY8oTrwfAhR+h0pBePcRGa9YM5Y+ZOay5LNZjHwOJ10wexWLER+SInNYVhuOMxRdo3FhK40LW3FsGzMjUTWjIH787f/7HzrXF6J6Nq56khmtn2Dbjq/Q1PBJNq56ks71a+lcv5amRUtZ8eFP4o+UoeiH5o92uJjKjHTs86PhwfF2oCRylChR4rhEFMR9GpA2BZs4sWoZrw6+wpM9f+E9sz82aRtX15jbFmHxYIZ1aS9/6a6k2jM4abs9Cb2wir55C5FEH359srgg+gOFaI7KSiT/7nQaWQohiX5kawjD6sWwBpGlMKKw72gAQRRoXNhKw/xZ7NqwjY1Pv0x6JM6Gx55n6/NraTvjJGYuW1CYqBwCyZE+6mZeTUfn/07rNl5TczkvvnTxAVUh2ReOC9j73OzwIYEqgTrFfKWj8+u8Y/nDe70HtbVXIUmliUSJEiXeegiCgO73o/v9hCpryCTipIajpBKj5BKjZJJxNE1H8/rQK6tRPLsjNCT50AT1A6UuUMdQdoikkSSoTVNiWhTxtzahDqcwB6Jo9VUTHtiv9F7IdrODPnuQp4yXiT039cLIVGhWHqvoy/Dz57r49KmzGezvAcAnB4jnR/ApfsJ6RcGbY2gA0R+g3KfRNZIh7FWoCh74g7EoyohiBEWJ4PHMwLZTWFaSfH4YyxrFNEcRBBFJKqS1TBUdKggCsqoWTGcL1ge4rls0Ni1UdTGyWYxsDiOXKxicplPkMxk03XPExKtjhax6mLlwBTvWrObP3/kG7h6ROy/ddy83ff92Bof+TE3NlTz8X58eb+tcv5Zf3vJJLr/lX5l10inH4tInMZ2QURI49p+31193iRIl3laE9TAexUPGyuBTfFNuc13bNbw6+ApvxF4mmrucCr1m0jZWWYTrZsZ543UPW+IKm+KFY00XCqiMDOPd9AY9CxfRGBHwahO/KgVNhWQCazg6QeQAEAQJValBkkIYZj+m1Y8jSEhiaL/MwgRRZMbiNhoWttK1fgubnn6FzGiC9X97lq3PvUrbmSfRctICJPngQoVtK0cq3jut23hz06eIDb+GXzuNKdKNDxrHcbAsi7xh4DiFHFhJkjgW60qBQA2Dg28wY8Yn2bZtcjTHjBmfYnh4mIqKmlKubokSJd7SyKpKsKKSQFk56UScaDpH/Zz5aF4v8iF6dhwOPLKHxmAjm4c341N80xpiippCaP5MepMZ9JE4bnl4vC0g+rnSeyG/S9/P79t/R76zEpjotTHdeP/Orpe5v/l0AO5/rYd/u7QNj9dHNpNGEmVUSSOaHcAj+dGCQRgahMoadL+fdN5i51Aavy7jVQ/+kaqQ1hJAlgPoeh22ncWykhhGDMOMkjeGABdJ9CBJPkRx+t+bIAgoaqGKDfghUiivahkGRj7PSDqLpCjks2lc20GU5XFx662e3uLYBv1dL1M7ZzY3fueHPPnLn45HciSHo2xc9SRLzr6DN55+kuRwdHy/psUnsuLDn8AX3n9xrMTxT0nkKFGixHGLR/ZQ6a2kO9k9rcjREmphccVS1kXX8mT3Q1w/++8mbyTLhJsruKh3mIdjYRK+OVjZ7JShgGYsBo5D+PmnSc2dT+9olvqIF486ceIl+gNY0eGCN4dvsjmqJHrQ1WYUOUze7MG0h5BEP5I4dT/ejCiJNC+dx4xFc+h8bQubn3mZTDzFuodXsfW5tcw98ySal85DPAixo+A2fuXUbuO1V9G780XCvnMP+Lj7g+3YZLM50pkspmmhKDKKLB/VKNoZTe/kiSdXcemlV9HV9b+T7kFN9ZU89NDfuOSSS9BKqyYlSpR4GyCIIp5AEC0QRPf7kQ7RU+NwUuWtYigzRCwfo8JTMe12ofIgQ7ObyGzZiS+VxvHvHk+XqAt4g+2sS78OFXdB6pOAhOO6U5qPA5h9fVy17WkenPEObFEiY9hsH0ji8wfJZgp+Th7ZRzw/zEhugBpvI0IiURA6/H7KfCo98Swd0TRza4KHLSVTkjxIkqdYnrZlj/K0UUxzFBcLUVCL1Vr2HUUiCCKKpiMpKnooTNWMZmzLxMzlyCTjmNkc+XQaQRJQVB1ZVQ9r6dqjSS4dJZeO4gvVcdnn/4nBzg5W3vEThjrbeem+eymrq+el++4FoLKphRUf/uRx68lR4tAoiRwlSpQ4rqnwVNCd7MZyLGRx6q+s69quYV10LRtiL3F+7nLK9MpJ29ihIJedYHDz4tNxEfjyw9v4y/o+MsbuHAqvKnFVW4j3eL3IQ4OUt29hqGUuPaMZGsu8aHsICoKuFb05hqcUOaC4OiNFEEU/prlnCksEUdi/FTRRkmg5aT5Ni9voWLuJzc+8QjaRYu1DT7Pl2VeZe/Yymha3HZAJ3HTRHPtbUeVQkEQJv8+Hx6OPix2ZbO6oiR2youP1hnjjjTdoaKhlRuMn2baH4/qMGZ9i3br1bNy4kcsvv/zIXkyJEiVKlEARFRoCDYwOjWLYBuo0hs+iCBUNlXTE0/gG+gvRGXrRrFMQ+HDD+/ni9q+R83SjlD2HOXIWjgvLv/0M4psGF8U2+dmj36QqG+ec7rU8MWMZAKm8hfdNaRx+JUTMGMar+AkFgjA0AFXVCD4fVX6d7liWsFelLjyNeeohIIoqqlqOqpbvUZ42ubs8rTWCgFwUPDz7HTGq6h5U3YMvHClEeeQy5NMZcukUmXgcALlYCniqMsDHO+l4L5lEP/7IDN779W/x+1v/iaHOdu7+amG8r2xq4YZvfBdRlksRm29TSr/VEiVKHNeE1NC4Ael0zI7MZmH5Ilwcnux5aMptdFXnHWedzxObBrn4v1fxu9W7SOQsLMcdfyVyFr9aN8yd9acCEFm7hoDqkkpn6RvNYlrOhGOK/gDW8DB2Oj3VKXdvJyhoah1efR6KXIVlj2LZo7ius9f9JhxDlph58kIu/Oz7WXzxmeh+L5l4klcfWMmjP/wdna9tLpZD2z8Sw13U1l6JptUCu6uJJIa79vsYh8KY2FFRFiYc9IML2WwOw7T2LGZz2AmG6+js6sCyLF54YTW1tVdPuAe1NVfxwgurMU2TXbt2HbkLKVGiRIkS45Tr5VT7qollY3vdLuRR0BuqiVVUIKVSYFm724QA75/9KQC0ykcR1CGg4Am151hvOS5ZQeb+lkKaynXbViIUx2O/JmPtcUwASZRRRJWh7ACGKoCRh8GCgbkqi3gUiZ1DKZI58/DcjGkQBAlFCeHxNBAMLiEUWkYwsAhNq8bFxDAGyOX7Mc0EjmPt+4BFZFXFGwwTqa2jqnkmlU0thKqqEEWRXCpJOjZCLp3Cto5s/w43ruuQjHWQiHVw7o0fndC24sOffEsIHLblFAxmrf2f35UocHz/ZkuUKPF/HkmUqPZVk9tHdMH1cwu1udePPE8sPzyhTQBOrGvlty918+1H9+24/udZZ5KRNaxt25jt9RJQRYaHY/SMpLD2GGgEXcM1Tazh4b0cbc+++PCos/BqbQiihmlHsZ3sfu07fgxFZvbyRVz09x9g0YWno/k8pGMJXrn/CR67/Xd0rd8ywWxrOsajOZoLVUSORhTHVEiSjN/np6IsTHBM7MjlMI+Q2OEL1AAiH/zg+/nUJz+JbRk0NxUMyFqaPwvApz/9aW688UZs28YwjMN/ESVKlChRYgKCINAQaECTNdLm9AsHkiRQFdJJVVSQr6hAjsXHS8OmUgk+suQ9uJlWBNFCr70XmH48fKjlVNKyTlNygFP6N+FVJWZXB0inEpO29Ug+8naO4fwgrt8P0UEoprSEvSppw2bnUBrrABYbDoWx8rS6XkswuJBw6BSCwaV4vc0IgohpDpPL9WKaMRxn/8cxSZbR/X6CldVUtcyksnkm4do6FE3DyOVIj46QTSYwjTzukVyROIykRruoam6hadFSAJoWLaWqZdZbQuBIxXL8/msvkYrlSkLHAXJ8/3ZLlChRAohoETyyh4yZmXabOZE5zCtbiIPDUz1/ndBWE4iQyLp862/7V1IupXr588wzAEj84hfMWLiIyvIyhmNxOgdHJggdkt+PFR3Gzkx/bXsiCCKKXI5Xm4umzMB185jWEK67/6suUBA7Wk9dwkV//wEWvvNUVI9OaiTOy/c9zmM/+gPdr2/DdfY+AUkMd1FbcxWh4InU1Fx11KI4pkKSZAI+P+VlYYJ+P+6Y2GEd2H3ZF6aRIRSQkdwom9b/he2bnqKm5gpCwROprb0CRfEgSRLNzc00Nja+ZSZxJUqUKPFWJ6AGqPPXkcgn9vrdG/aoBHwaIxWVWKEg8sgoANlMmtHRGCsqP43g6ui+bjzlq5FFYcqXoXn568zTAHj3tie5cnEdsZGRcT+OPREEAb8SZDQ3TFI2IZ8bj+YAqPRr9MVz9I4e2MLF4UKSNDStEr+vlXD4ZMLhk/D52xAlD5aVIJfrxTCiuG4Ox8njuvsudyYIIprHS6C8goqmFqqaWiirn4HuD+BYJpnEKOnEKEYui+MczfJpB4brOiRG2zn3xo8giCIrPvyJ496DY0zguOe/1hDry3DPf60pCR0HSMmTo0SJEsc9XsVLuaecvlQfXsU77XbXt13DV194nbXDz3Ju/aWEtYJTdm2gkh892X5A57x/1llcuWMVnm1b8HR3EqqqQ/H46B8cpLNvgIaqMjRNQ9B13FQSKxpFmjFjv48vCiq62ogihcmbvZj2MKKgIYmBA3I4l1WFttNPZOayhexYvYGtz60lGY3x0j2PEqx6hfnnnELd3JkIUxii6b5y8pk0SxbfQT6TRveVkY737ve5jwSyJBPw+/HoOplcjmw2SyaTQ1ELnh2HSn/3a1N8toElS+7Acd0Jyr+q7rv0b4kSJUqUOHzU+esYygwRz8cJ6+Ept5ElgeqgzrasRb6xHnFnO1I8gR0KMrBrO589cxlf8v6N2sC+q2VYQyezfcWzzBvp5IRAjIHuyVEc4+cVZWRRJpobwOOrQYkOQlU1eH0okkhQl9kZTRP0KIS9x2782LM8rdczA9tOY5oJcrlBcLuwrBS27QDO7ohJQUAQJERBQRAkBEHe411EABRdR9F1fOEwlmViZrPk0mlyqSTZZBJct1DSVtOQpOPrETMd76GyroYrvvBv+CLHdxWVPQWOXKqQIpRLmdzzX2u49osn4Y/oSPKRjVMwDIOrr76aW2+9leXLlwOwatUqvv3tb9PR0UFzczO33HILZ5999vg+l19+OVu2bJlwnAcffJA5c+YwPDzMV7/6VZ577jl0XefKK6/k85//PPIRLGN8fP0FlihRosQ0VHoq6Uv1YTv2tCXm5pXPoy0yjy2xTTzd+zBXtLwPr6JR5vXz59cO7OE9ofn4y8zTuG7bU+Tu/BXK5/8FnxCmQfcwMDBE33CCCr+K1+9H8vmxhoeRKyqRvAdmPCZJATzibBS7rFiFZRBZDCGK+3ZM3xNFU5l75knMOnkh219cz7YXXiMxOMKLdz9CqKaC+eecQm1b87iAIggiwXALj//s/2PR+StY//gTnP+RT5BJ9B+QV8iRQpZlgn4/3jeJHaoqH/ZBsWPHS+i+aiJljYf1uCVKlChR4sDQJI0ZwRm8Hn0dv+Of1nA87FUJ6DJJS0JqrEfb2YGYyTI00MuM2QupCJRx8p0nY+2HN8VHFjqc9yqIv/8VQ9dctNdtPbKfhDHCsJykOisjRIdgRqHKS0BXGEjk2DGU4oT6MOoRfhDdHwRBHC9Pq6o1yHKeUHg+ouDiuiaOa+E6Jo5j4DhZbDuH45g4bh7XtnBde/ecQAABcVz8UDwyqjdMoDyCmTcwc3myyTj5TBrXspEUpVCeVjk+FgyG+l9j1kkXYNvHb9TJVALHGEdL6Mjn89xyyy1s27Zt/LPOzk5uvvlmPv/5z7NixQoef/xxPv3pT/PII4/Q0NCAbdt0dHRw55130tzcPL5fJBIB4Atf+AKCIHDXXXcxOjrKF77wBQKBAJ/4xCeOSB+glK5SokSJtwghLURADZA0pzcgBbhuzjUAvDq8ioQxSkDzsH0gOaGKyv5y7+yzyUkKxuuvo27fDICmatTU1pL3VJB2ZNLJJHlcnHwOa4+66weCIEgociVebR6a0ojtZjCt6H6Fk74ZRdeYd87JXPS5DzD3rGXIqkK8P8oLf/grK396D31bO3BdF394BoMd7Wx+7mnu/uqX2fzc0wx2duAP7380ytFgTOwoi0Tw+33YjkMmm5tkDHco5HMJXn7h4cN2vBIlSpQocfBUeiqp9FYykhuZdhtZEqgO6eRtCyscxqivQ8xkIJ/n9TWrALAcC8vd9+vBU0QQRYwXXkDu6Zv2nFBIW/HKAWL5KGnNhcF+yO5OV63wawwl8+wa2b8U1qONICjIkg9FCaGqFehaDR5PIz7fLAKBhYTDy4hElhMJn1JMe1lGKHwiweAJBPzz8HibUNRKREkHXBwnj+OmEJUMqt8iVOMlVOvFV6UjaHly2WGSsR5SiSGMXOqYprWk4708/fD/HLPz74u9CRxjjAkdRyp1Zfv27Vx//fV0dU1MX+7v7+f666/nxhtvpLGxkZtuugmv18v69esB6O7uxjRNFi1aRGVl5fhLlmUMw6C8vJyvfOUrzJ49m2XLlnHhhReyZs2aw379e1ISOUqUKPGWQBZlqr3VZM2957suqFjA7NAcbNfi6d6HkUSRVP7gHojjWoCHmguVVqx772YsrlOVJcpCQVJKBHzlCIJA1nXID/RjZw4+H1cUNXS1Ca82D1mKYNlRLDt5UL4QqkdnwXnLuehzH6TtjBORFJlY7yCr//gY0Z1pAuFmVv7ypxP2WXnHTwhGmglEmverDN3RRJFlQoEA5ZEy/L4jI3aUKFGiRIljjyRKNAYaERH3ajoe8aj4NYVU3sKqqsCsqUYaTZBPpw7ofANlIsGLLgQg9NRz+9xekVQkQWZITGBlkhAd2uPaBSJelY6RNNFU/oCu43hBEEREUUOW/ShKGE2tQNdr8Xga8ftaCQUXEgmfTCSynPCeYkhoKcHQCZRVLKGi5gSqmxZR2dxKpK4eT0DFtEZJxttJxLaTTneRNwYwrREsexTbTmI7WRzXKEaPHBk/LNM4Np4pAK7rYubtaV4WqZG9CxxjjAsdIznMvDXtMQ/mHq5evZrly5dz1113Tfh8+fLl/Ou//isApmnyxz/+EcMwWLRoEVAQR2pra9Gm8DpRVZXvfOc7NDU1AbBt2zaefPJJTjnllPFtvve973HGGWewaNEiPvCBD0yIIjlYSukqJUqUeMtQ5ilDT+rkrBy6PHU6hyAIXNd2Dd9c/U1eiT7Dddn3UKOXH/Q57209h6t3vYizdTPClk24c+cDoCkSflclato0BKuJ+PzEdu7A7txJaM5cROng68rLUhBJ9GHaEQyzt5jCEkYUD9woS/PqLDz/VFpPXUJmxGX2SWcx3L2LP3y5UDN+T4Y62/n9rf/EuTd9jJqm00iMtpOO9xx0P44EY2JHIY0lSzaXw8jmUFUF+RDueYkSJUqUOH6IaBFqfDV0J7up8ddMuY0sC1QFNXYMpvBrOkZdDYJhoMTiB3y+8o98hMRfH8b72uvIF56LVb533wZvMW1lRJaoHOhDqKgCTyFd1avKpPM2O4dS+DUZXXl7jk2CICFJErCXuUkIHMfCdS3MfIZcJk42FSMTj2HmUxh2DkkBUQVJsgumqNjFSFYBAZdCnoyEgIQgSFB83/3v4x/Xdbnv26/Sv3Py3+aZ17dS3xbh/u+v3afAMUYuZXLPt9Zw5eeX0rMlxqq7J4sCtbNCXPWFEw/I5+2GG27Ya3tnZycXX3wxtm1zyy230NDQAMCOHTtQFIWPf/zjvP7667S0tPD/s/fecXJX9f7/89M/02d2ZrYm2fSEBAKhhRJ6VYqINMGCuYByr+JPEO9FiqgIAupVv1dEpSiKFAHpSAsgPZQASUjb7Gazm22zZXqf+fz+mGSTzZZMshvSzpPHPJbMOZ/zOWfLvM/nfV7v9/sHP/hBvxNkI1/5yld47733mD17NhdddBEAL774Ig899BC/+93vqKys5H//93+55ppreOSRR8qe91DsWkd1AoFAMAIOzYHf9BPNDp8YDGBOcA6T3FMoWDmebHqMqVUu7Pr2GcKM24f7nFJ5WvnZJwa02XQVm6bQFstRtHmpnjIdNZkm2tZGJjF8CbxykCQFXa3aEMJSR8GKkyv0ble+DNMRYPyMY5kw+xCev/O3PHrzDYMcHBsJNTfx8I3X8NT/3oZieakcNw/TERjVWnYEmqbhcbmp8PpwOuzkCwWSyfQuHWsrEAgEgvLYWFLWVE3i2eGVGT67jsvUSGTyoKlkx9dRdA6foHw4zFmzSE2fimRZuF97u6z52VUXvXKcZCw0QM0B4Hfq9CayrO1O7PVVumRZRVFMTHsF3sAkaiYeyKR9j6V+n+OonXgULue+yLmJFOJVkBmPLk3DbszGbszANKaia/XoahBFdlJ6dM1TLCbJF8Nk8yGy+S6y+S5y+RD5Qh/5QpRCMU6xXxmy8/OMAQzlawiMc7LfseN4/q6lZTs4NpKO53j+rqXsd+w4AuOcYzTLkamoqOCRRx7hhhtu4P/9v//H888/D0BTUxORSIRzzz2XP/7xj0yZMoWvf/3rtLcPDP+67rrruO+++8jlclx55ZUArF+/Hk3TqK2tZcKECVx//fX8z//8z6jnKpQcAoFgtyJoD9KeaKdoFZGHCamQJInzZpzDre/dylsdL9PUdzlfOKCWBxa1bPP9zjqgDmXGJKyHH0ZqWAmrVsD0mf3tdl2lULRY15NicqWHQDZD1u4kZRWJ9oSwuz2oo0i6JcsmhjYRVfFtSEwaQpEdG4x9GdcrOtUTDmHNB4t44hc3YRXLM/bNnyzmL1d/hzOvupYpBx3KulUvUyxkt3sdOwpd09A1DZtpKyUnTafIZHMYurbhhEkgEAgEuyMOzcEE1wRW9q7ErtmHtPmaKhN0GTSG4jgMFUyDzIRx23W/jw4+msNXNeB4bzHhk46h6BrZzmqKTqaYoluJo3esQwtWgllSmcqShN9h0NKXwufQqXJvWzLxPR1ZUbC53NhcbrxV1WTTKTLJBIlwH5lEgmQijSIraDYXumEiy6WfvWVZWOTBKmBZeSw2JkfdkETVymBZ2VLiVPJYxcyGfhZFKwGUr2oYSyRJ4ovfP5B8dvAeLJ8rcNrlc3jktq2HqmyO6dQ47fI55HMFzr76oEHtqi5vk4qjHFwuF7NmzWLWrFmsWbOGv/3tb5xyyin89Kc/JZ1O43SW/mZuvPFGPvzwQ5544okByUVnziztn2+++WbOOeccWltbOe200/jb3/7GCSecwAEHHMCJJ57IORsOF0eDUHIIBILdCo/hwak5RzzZATig8gAmuCaRt7Lc9+m9XHLUpO26338cOZ7OZA/Fw48CQH7uiUF9XKYGwNruJCnTiT2bpapuAp5gFalYjEQkTLFM58JQSJKEqnhLpxraFKBINh+iaG3d6VAsZOlY9x4106dy8S/+j/o5c8u6Z/3+B3LRLb/G5Q/w6M038ML/3ccHTyyk8b2l9K3vopDftRQTuqbhcbvx+3zY7TZy+TzJVJrCKL7vAoFAINi5VDmq8JpewpnwsH0qHDoOQyWRLeVoKjq371T7D8WZpMbXIefzuN94t6xr7KqLuFYgGl6P1d01oM3UFHRFpjEUJ5kV+aOGQ5JlDLsDd6CSmqkzqJs5i9qpM3AHK7GKRRJ9vUR7QqTjMYqFArKkIcsmiuJEVbxoqh9dq8bUx2EzpmA398FhzsFu7ofd3BeHuS8OcxamNh2s4M5bpyShGcoQLxVnhck5/30QplMrayzTqZWqrFSYaIY65Lhj6eBYvXo177///oD3pkyZQl9fH1BKEu/c7O9OkiQmT55MZ2cn8XicZ599dsA+eOrUqQD09fURDAZ57rnn+P3vf8/06dO5++67Oe+880ilRpc/pSwlx//93/+VPeC3v/3t7Z6MQCAQbA1N1qh2VLOqbxVuwz1sv5Ka40v84v1f8FLrs3xz/2/yg1Onc9u/VpV9r/8+ZTpuzeL9dR8RPPogqt/6N/LK5RQbVsHU6QP6euw6fckszUmJifkYvmiU4MRJOLw++trbiPV0YzqdGLZtl9FuWpOKodegFj1kc+3k8l0UJQVF9oyYKDSd6Cad6MbhqeWM7/2Arua1vHLvH4cMWQnWT+LYr1+Cf9wEPn7xSRY/9yzpeCn0JtLZw9rFy0tzkWU8VX58tZUbXkHclRWjykUyFuiajqZqZG02kqkUqVQay7IwDB1FFn79kRC2XiAQ7Groit5fUjZfzA9ZUlZTZSpdJk3dCZy6ut2H9T1ZhVf2O5bPt9yP661FRI47EsscWYEhSzJ2zUWv2ou5fjWOwCY1B4DPrtEWSdEYSjCrxo0s7xwlwe6EZphohomzwk8hnyOTSJCOx0lE+kjFohQLeVTdQDdtqPrQSllJkpGQQdrkNFBlCaxtz9fyWaCoMk5fydGxteSj/Q6OHVhGdkteeeUVHnvsMZ577rl+58myZcuYPHkyAF/96leZN29e/96gWCyycuVKLrroIlKpFN/73veoqalh7ty5/dcqisKkSZN49dVXaWtr48ILL+TYY4/l29/+NvPnz2fVqlXsv//+2z3nspwcHR0dPPLII9TW1lJXVzdsv7GWxAgEAsFQ+EwfuqKPmIAU4KCqgxjnnEBrfB2//fAOfnLk9UhI3PqvlVu9x/dPns6Fh9Ty4dsv41DdhGxR3IfMxfHO+8jPPUnxO98fPC+7Tm8iw7qchNK8Dn91NQ6vD9PpJBoKEe5sJ5oM4fD4UNTtjxZUZDumPhlV8ZHNrydX6EaRnSjyyA6URKSNZLQDp28CX/7pbTxw/cDko8H6SXz5p7cR7VtLd/siamdXUjPr66SiCfrauvpf4bYusqkM4fYQ4fYQTR8sA0ryU291AO8Gp4evthJ30If0GTsXJEnC0HR0VcNus5FMJkmlM1hYmLreL3sVDETYeoFAsCsSsAWotFcSSoaodFQO2afCqdMZSxPP5nEZ5Z2GD8UfjDkcF3geW3c3rnc+IHrskVu9RlcMMjaTcG8LRnc76rhNylFJkgg6Tdb3JfE5dOq8tu2e296IomrYPV7sHi/emhqyyRSZZJxEXx/pZIJkNIyiamimiaYbn/l+Yywpx9GxMxwcAGeeeSZ/+MMf+MUvfsG5557Lm2++yZNPPtlfheX444/nd7/7Hfvssw+TJk3ivvvuIxaL8cUvfhGn08nJJ5/MT3/6U2666SaSySTXXnstX/nKV3A6nRSLRW677TaCwSD77LMPzzzzDDabjYkTJ45qzmXtsm+66Sbq6+u56667uPXWW6mtrR3VTQUCgWA0ODUnftNPKBUa0ckhSRLnTj+H//3wV7zR/gKvNJ3KOQfP5eTZVdz9+loe/2g9yeymsAu7rnDWAXV89fB6ipbFDQ+8zueqU6iyhkNzs+6IWcxc9CHy8qUUmxpg0tRB9/TZdXriRVrW96Ktb8c7dTKKquGrqcXmdhPu7CDWE0LVdGxO13YbZEmS0NQKFMVJNhcil28jl0+gKl4kafgNnmUVifWtBeC4iy/l4R//sL/tuG9cRrRvbX/7xvvYPU7sHid1+0zeMIZFMhzbwvERIpfJ0ru+k971nf3XK5qKtzqIr26T48NZ4UX6DE6z+p0dbg27LUcyNbyzQ9dFvLSw9QKBYFdElmTGu8bTm+4llU9hUwc7CnRVpsplsrY7gUvfPifHdE+eT/sUnt7nWM59/RFcr79NdP48KONQwqF7iOltGOuWEQjWgLHJpuiqjMPQaAzFcZkqbnP7nTB7M7KsYDqdmE4n7mAVuXSKTDJJIhImE48Ri8eRJAndtKGZ5k5Xlm4PIzk6dpaDA6C6upq7776bm2++mb/97W/U1dXxm9/8htmzZwNw8cUXk8lkuOmmm+ju7mb//ffn3nvv7Q9hufnmm7n55pv5xje+AcBZZ53FVVddBZQcJFdccQW33HILoVCIyZMnc8cdd+DxeEY157KPEi+99FKWLFnCT37yE+68885R3VQgEAhGgyRJZSUgBTik5mBqHeNoS7Tycuu/kNGpcvm4/LhxXHv6TBq6YsRSOVw2jalBF5GuDt5f8QnfezFKoWgxTlfYr6KAKmtYlePoO2AGFR8uR372CYr/ddWQc/M7TXqSOk1LVjOjshK7u/QhbzqcVE2cjMPrJdzRTrS3G5vTjb4VOexIyJKOqdehKR4y+TZy+W5kSUeRXSOGsMTD66ieeAT1c+bS/Mli6ufMpbJ+Ih3r3trqPSVJwuFz4/C5GTe75OixihbxvgjhfsdHiL62Lgq5PD0t7fS0bMqwreoavtpKvBucHr7aShw+9w5TCEiShKHr6JqG3ZYlmUyRzGSQsDB0nYrAZObOu1BUZkHYeoFAsGviMTzUOmpZG12L6TCHtBcVTp2OWLo/N4cqq1BGWqaNITDnTsrw07CN+3wHc7rrBWzRKM4PPiY+b3BSxy2RJRnD7ScWasVsb8Q5cdbA+dtKYStNoQSza92oyu6rONgVkCQJ3WZHt9lx+QPks1kyyQSpWJREJEwi3IeFhbYhrEXRdh/H0lCOjp3h4Fi5cqDq+YADDuDhhx8esq8kSXzrW98akGR0c1wuF7fccsuw91qwYAELFizY/skOwTbppW+++WZaW1vHdAICgUCwPfgMHy7dRTwXx60Pn5tDlmTOmf4lfrv4N7zd+SLza06iIwYdsT7smoFDN4jG+5B1H281NmItXYqZK3BMVQUL23X+2mBww9wkTq2UST12/DH4Fq9AXraEQnMjUv3kQfeUJImKQAXhtS2sXr6WfQ6ahb7BKEmyjKsigM3pJhrqJNzVSSYZx+72ji6ERXFik6eiKRVkcm3kCiFU2Y0sDy2Ntawi0XATx118KX/5/rc57uJLiYYbt7vUmiRLuPxeXH4v4/cr5SuxikViPeF+h0e4rYtwezf5bI7Q2vWE1q7vv14zjX6lx0YHiN3jGlPHR8nZYaBrOvZclngyRTqdZd85J7Hmg0WMn70fiiKkxMLWCwSCXZFaZy3dqW5i2diQOblKag6D5u4EsUyC977yXtljx5JRamwWx9fkeKlN559Tj+bCxU/jfvVN4ofMhTJUl7pqI2HqhFuWYlZPQDUHJkCtdBp0RFN47Rr1fkfZcxNsHVXXUXUdh9eHr6aOTDJBJlGq1pJKxCnkcxR3sYTpI7G5o+OZOz7htP+cs1MUHLsz27Sjdjqd/aVfBAKBYGeiKRqV9koaw40jOjkADqudx8Mra+hItvNWx8scX3c6AMlchng2xbr2FiboErIkowaDGI1rOWt8mk/DKh0pmfvXmFw2I12qcV5VTeyA2bgXLyX/9D9Q//PqIRUTsiLjCXrpXdPMqmCQGfVBtM1OblRdp6JuPDZPSdUR7+1BM0xMp3O7H+wlSUZTAyiym2y+g1y+g0I+gar4kKTBss1EZD2VdXV84fvXYbochNYv2677DjsfWcYdrMAdrKB+/xkAFAtFYt199K3v7Hd+RDq7yaUzdDW20tW46eFat5sDEpv6aiuxuUdfC35zZ4dRW0UuleWJX9zEN371e/Sa4XNR7C0IWy8QCHZF7Jqd8e7xrOhZgVN3DqnirHAYdEYzPLP8I+xbhK0oHR1E31+Md8Y08rLFryN30VsMc6hxAF+0fw6wOG18lkUhlX/UHc7Zn76M2d2LfelyknNmlzVHm6eKdHsTPeuXUzXlkAFtqiLjNnSauhO4TQ2fY/vLywuGR1FV7G4PdrdnU3naRIJYXw9Kb+/Onl7ZbHR0fPmGeRQLlnBwbCOj+m6dccYZtLe3b72jQCAQ7AAqzAo0RSNbGLmUqizJnD3tSwC81fkimUJ62L55n5ei04GZTrJgehpZsljco/JuaJNPOHbisVgS2JYtJ7xm8bDqB8XlxkeWjsYWGrpiFIrWoD42p4uqyVOomjwVSZaIdneRy2TKWf7w65V1TH0CNmMmquIjV+ghX4hiWYPvH+5tYMpBhxLpXT2qe5Y9N6VUlWXigbOYe/oxHH/ZuXzhmss4/rLzmHv6sUw8cBbe6gCSLJNNpulsWMeKf7/P2w8+x7O/+gvP/OJe3vr7Myx/9T3aV60lHU9u/1xkBX9wOq/++S6sYpGX77lz1N/7PRFh6wUCwa5Cpb2SCrOC3vTQD6uGJlPpMohn8lhb/Jf1+8iaJnIsjobK2fbPkbfyvJV+n1W5NQDYVDh7Ypa0avD4pFLSUfcrb8AQ9nMoZFlBd1YQa1lOLBEa1O40VfIFi8buONm8KHG+o+kvTxuspHrKdFzVu1euKUWVkSRJODi2g+3XRgOtra3k86Lus0Ag2Dm4dTdew0tfpo+ALTBi3yPrDueRVf+gK9XJO52vcEzt54buqKnkKoMYjc1M8Oc5fXyWJ9cZPNhoMN1ToMKwyFcGSO6/L46PlqI9/yzdC2oJmFWDFR2ShOJwUhHvpbk9jCrLTAk6B5WQk2UFdyCIzeUi0tVJJLQphGU0ibNUxY0iO1ALFWRz68kVulBlL7Js9PdJJUK88dI91NRUosg7J0mXrCoblBpBoHRaVsjliXT2bJbcNEQ01Es6nqR91VraV63tv97mdg5Qe3hrKzHsW89z4vROoGttE81LPgKg+ZPFdDWtoWb6TFGBZTOErRcIBLsKmqwx3j2eJaElZAtZdGWwGqLCqdMVy5DKFrDpm9k1VSXt9yKnMxSKRaZo9RxuHMTbmQ94JPEMV3m+iSHpzAvmeb2jwD8nHcXZq1/DaG3HXN1IevqUsuaouLzIHc30rF+Gber8QWVvA06Djmiadb0Jpla6RvX9EGwbI+UqE+xZjMrJIRAIBDsTSZKoslfRlezaagJSRVY4e9rZ3PnJ73mj43kOrzoeXTGG7FvweSg67MjJJKeMk1nap9IYU/jzKoP/b980sgSRE47G/vFSvMvW0Nm8FOoZ2tHhdKF1dRBIR2kM6aiyxMSAY8iQFM0wCYyvx+7xEu5oI9bbg2G3Yzq2P0RDkhR0tRJ1QwhLNt+5IYTF0x/CkssOr2zZWSiaSsW4KirGVfW/l8/miHR0D0hsGuvuIxWNk4rGaVvR2N/X7nUPyPHhqw2imaWftyTJOL0TcPsm8syvfjDgvi/f83suvOmXoKrC0SEQCAS7IH7TT7WjmvZ4O1XOqkHtpqYQcBq09CYGOjmAjMtJQUkjJ1MUnQ4+bz+e5bnV9BUjPJd8hbMcpyBJcMHkDDfH7DxbP4+zGt/A/cobZTs5kGUMl5/o+jV0V9ZT7Z00oFmRJXx2jbU9STw2naBr6L2IQCDYfka1g6urq0MdRaI8gUAgGC1e04tTc5LMbT1sYf64IwmYlaQKcd7tem3YfpamkasKIKcyKFaRi6elMWSLVVGVhW2lGN9cdSXJ/UrZ02tf/ZBQup2edNfgkBBJArsDo6cLrwYNoTgtvSPP1e72UD1lOlWTShuqaHeIfHbkkJytIcsmhlaP3ZiBqrjIFXooFOOjGvOzRtU1/BNqmHrY/hxy9omc/O0LOfN/LuXoi89iv5OPYNy+03BUlEqOJcNR1n+6hqUvvc3r9z3Bkz+/ixf+7+90ru4jWDuPRE+WB67/AaHmpgH3CDU38ffrrqJ91QoRurIBYesFAsGuhCRJ1Lnq0FV9WNsfcOoYmkIqNzDZpKWq5IMB5GQKLAtTMjjHcRoAb2beozG3DoDxziJHV+f459SjyUsytoYm9Jb1g+4zLA4nzgz0dSwnnosOarbrKjISa0Jx0rndJyGmQLC7MConx9NPP01NTc1YzUUgEAi2GUMxqHRUEs9u/YFdlVW+OPUsAN7o+Be54vCOg4LXQ9FuQ06mqLRZnDOp9MD7eLPO+kTpozNywtEAOJcsx92TJJRqp3coR4fDCfE49lgYp66xqitOWzg14lxlRcFTWUXNtBl4KqtJx6Mkwn0Ui9sfwytJEqrixWbMwKZPASxy+S4sclu9dldFM3WCE+uYfsRc5p1zMqde8RXO+O//4Kivncm+Jx5O3awp2L0u6vc/kLN+8BMmzTmMZ//fL/nHT64d5ODYSKi5iQd/9AOe+MVN9LW3kUvvekqXzxJh6wUCwa6GW3dT56wjkokMmW/K1JVSbo704FC7vM9D0W4ip0p2eIY2hUP0/QH4R+JpclbJJp45IUvS7ePVcXNL93zljfInKMuodg9yeycdkbUUioPn4XfqhJNZ1nYnhlyDQCDYfsp2cvz973/nwgsv5IwzzuCWW26hp6dnQHtvby8nnHDCmE9QIBAItobf9KPKKrnC1h/Wj5lwNEGzikwhyQehN5GQkCWJLf9DN8hVbjrtmV+VZz9fnrwlce9qg1wRcrXVJPediWRB4JV3MVUbXam2wY4OWQa7HTraccpFTFVhZUeUrujWH55100awfiLVU2dg2O3EerrJJBOj+XaVQli0amzGPuhqDUhJcvkQ2T3khRbDO8Fk0mHjOfDsgzj5u2dxzg9/Qqw7xN+u+f9o/mRxWd+n5k8W8+erLmfdsk9G9f3enRC2XiAQ7C7UOGpw624i2ciQ7X6ngaHKg5QSlmGQD/iRN0tcfYb9JNySk+5iLy+k/g2AQ4Oz6jP8Y9pxANiXrkDt6i57fkWHHXdGId7VSHe6c1C7LEn4HQYtfUk6o0I5KBhMLp1mzQeLyO7lhy3bQ1n60z/84Q/85S9/4eKLLwbg4Ycf5qmnnuL3v/89++9f8nwWi0Xa2tp22EQFAoFgOFy6C4/hIZaNUWGrGLbfJPck7Jqdhee/NLBh9mFD9o9NifN26BHkZJKiw8FXpmb4yWKF1oTC0+t0vjgxW8rNsXQFjo+WYj/pGKhw0pVqQ5IkfEZwU+4NhxO6u6CvB09VDb0Ji+UdUWRZIuAcOR5XkiQcXh+m00m0u5tIZzvR7hAOjxdF00a8diQU2YahTUIq9mHqdTst8ehnQVfLUmqnT+PiX/yOhX/+Y1mOjvr9D+SEBd/C4R3+d2pPQth6gUCwO2GqJhPcE1jWvYy8lh+U4NOmKwRdBq19SUxtoH3LV3hRu7qRUmksm4lNNjnb8Xn+HH+Y19LvMEffh/FqLUdU5Xm9Nsjb1bM5vGMZ7tfeovfcM8uboCyDzYanJ0mXfy0u3YNdHZhjy9QUjKzCmlAcl6niMERooGAT8b6eDSXu70Sv2b0qw+xsyvpL+sc//sHPf/5zjj66JM3++te/zn//939z8cUX86c//YmDDz54h05SIBAIRkKWZKod1XSnurEsa8ikngB2zc4hfzuE/BCy0S1RZZX3vvIehaAfbe06inY7Hh2+MjXNH1bYeGG9xn4VeaaOqyW5z3Tsy1fhefl18hd8EQvoTJVid/sdHbIMpg3a26AiQIVDpzueYUVHjH1rJbz2wRnit0RRNXzVNdjdHsKdbcS6u1E0DZvThbSdSTIlSULCha5Wo4yiksuujpWDaKgH0+nijO9dQ6i5kYX3/mHIkJVg/SROWHA5lZOmoBl7T0I4YesFAsHuRsAWIGAP0JfuI2gPDmr3b6i0ks4V0NVNewPLZiPvr0Bv7yBvK1Xjmq1P5wB9Nh9ll/FQ4in+P/d/oEoqX56c4R/Tj+XwjmU43v+YyMnHUvC4y5pf0enA3ttHvK+XdnMdk9wzkKWBttZr12iPpmjqTrBPjRtFHnoPI9i7yGUyvHz37zeUuP89X/j+dZ/ZniSbzXL22Wdz/fXXM2/evAFtsViMz3/+83zve9/j7LPPBsCyLP70pz/x4IMPEg6H2W+//bj++uuZOnXqoLF//OMf09DQwF//+tcduoaynBx9fX1MmDCh/9+GYfC///u/fP/73+eyyy7j7rvvZvz48TtskiNRKIw+Wc/GMcZirN0RsX6x/s2/7q64VBc2xUY8E8ehOYbtly/myVtllMPckPoi6/Ug20xIJCg67OxfUeSwoMI7IZ17V5lce0CcvhOOwr58FY7Fn9B34tFofh9Fq0BHcj3FYhGfGSiFwNjtSN1dFHu6oLIan12lM5pm2fows2vduMzyVBmqYeAfV4/pchPuaCcc6sJ0OtFNW1nXD1jmhhwfo8n1sTuRiIRJRCM4/UG+/NPbeeD6qwc4OoL1k7jwpl+WnEaStM1/F7vz39Gebus3H2d3/jmNBrF+sf7Nv+4JSEjU2mvpSfaQyqYwtqiaZqoyfodGWzhNhaP02FMsFkGGXIUHNRTCSqexjNJBw5m2k1ida6KzEOKl1BucbDuaCc4iFTPrWLJsEvv1NOH899v0nX5SuROkoKl4utN0utpxah4CZvWgbhV2jZbeBG5Doc637ba8HPbEn/+2MJbr39Hfw2KxSGdTw04pcZ/JZLjqqqtYvXr1kO233347XV1dA9578MEHueeee7jllluYOHEid911F5deeinPPvssNtum3+cPP/yQBx54gEMOOWSHrgHKdHIccMAB/OlPf+LHP/5xf4Z1SZK47bbb+O53v8sll1zC//zP/+zQiQ7HkiVLdsmxdkfE+sX6d3d60j10Zjqp0AeHF0iSxH6V+23zmOs6OzCyGVxtnaR8HpAkjrbLLFfq6clo/HWZxRlBBfvE8fjWtqA/8yKtJ5VOwnNWhi6rE79ahVPxAqDE41jhRaQmT8VSVSzLojFVpHGNxCSfhk3dNuNVzOdJxeOkW1uxCnk0uxN5OxQZDQ0N23zN7s74SZM59uuX8o+f/LD/veMu/ibtnR10dYV24sx2DnuLrd8R4+1uiPWL9e9JWJZFNB2lIduAX/cPak/li3SFc/QpMoYi0drS2t/mTKewtbWT9nr63ztGPpRn9Vd5JfUmNRE/QcvPYabC4zOOZb+3mrC//T6rZk+nYJZ5ql4sYkaixPIJ3vf2UadPxpAHOzIS2SJt6yym+XUc2o57kN3Tfv7byq6+/mKxSDGfZ+E9dw54/7Mocd/Q0MBVV101bCLc999/n3feeYdgcKBq6p///CcLFizguONK+WtuvPFGDj30UD788EOOPPJIoKQOueGGGzjggAN2yNy3pCwnx7XXXstll13GEUccwe9+97t+74uiKPz617/m+uuv5/rrrx9WIr4j2W+//UYtsS4UCixZsmRMxtodEesX699T1l+frufj7o+pMCoGxeZuL+MnTICqSmyajiXLFO2ljck3nFl+s0xlcdzDvHEa9aediO9391L56SqyZ5xM3ucFIF1IkStk8NgdeHU/FItIPSGKAT9UVgFQtCw6oxkMp87MGveg2OFySMfjhDvbiff2oOo6ptNV1mdysVikoaGBqVOn7vDTgV0OScJfO4n6OXNp/mQx9XPmUj1lKrKqUVtbt11Dbvx72h3Z02097Fmfd9uDWL9Y/566/um56XwS+gRFUnDqzkHt3p4E68NJ0n0hxo0f12/v5IoKbCsaKLgcWBtyXFVZVTQn2liWW8VC+zt823Ux1ZJCq6zStLSGSdF2JqxeR+rko8qen+J0UWEYrA86cTpM6l1TkaXBNrcjksLhMtm31o2qjK1N3pN//uUwluvfHltvWRb5EUrTS7KMZRXpbFzDwnvvHLbE/QkLLqdy4uRS/xFUuKphbLO9XrRoEfPmzeN73/veIGdENpvl+uuv54YbbuCGG24Y0PaDH/yAcePGbVqLJGFZFrFYrP+9P/7xj8yYMYOJEyeyaNGi/vdzuRw//vGPefHFF8lms8ybN48f//jHVFVVbdPct6Ssp4DJkyfz9NNP89577zF58uSBA6gqt9xyC6effjovvPDCqCazPSiKMmZ/qGM51u6IWL9Y/+6+/gp7BT7TRzwfp0Ibm2SRsiRjmTYKlUH0da3k7XaQJGZ6LU6ozfFSm879a0wmHzAR37TJ2FY34n3lLXq/dDoAdtVBWpLoSrUhyzJePQCmHaWzEwKVoKooQI1HoSOapiGUZGaNC0Pdtp+Fw+PB5nKS6AvQ19FGsq8Xm9uNZpjlrVOWd/uf//aQjsc47uLL+Mv3/4sTFnyr7O/XnsjeYut3xHi7G2L9Yv172vrdipsJngms7luNU3YOciAE3TZC8SzRgoUsy5vaXS6Kfh9qb5hCha/0ngRnOz5HY2QdbYVOXs8s4njbkRxdW+SlfY/h0rcexPXGIrLHHY6lbz2fFoDldqH29hFI++jRu/Hl/PjNwQ9xVW47nbE07dEMEwODnTVjwZ74898Wdsb6LcviwRt+QNuq5YPa6vc/kKMv+gZYFv++/94RE6NvLHFfP2du6RpJKl3z8YeD+tbOmMUFP751mxwdF1544bBtd955J7NmzWL+/PmD2rbM2fWPf/yDfD7PQQcdBMCaNWt44IEHeOKJJ3jggQcG9L3//vt57733uOeeezBNkxtvvJGbb76Z3/zmN2XPeyjKdhGapslRRx2F31+SgVmWxUcffcTzzz9PQ0MDRx55JD/+8Y9HNRmBQCAYDRsTkGbz2TGvOZ+v8FE0TeRUqv+9L9RnqbUXiOVk7l9jED7xGACc732IEt5U0s5U7GiKTkeilXC2G1xuiEWgr7e/jyJLVLtN2iMpVnXEyRW2PUeGLCu4/AFqps3AV1dHJpUi3ttDcS+Nvy2HdDyG6XDxhe9fh8O3d1RRGQlh6wUCwe5KtaMaj+EhnAkPanOaKn6HTjK3hW2VJPJ+P5JlQX5Tvi637OJM+8kAvJj6N52FbhQJphw3gw67D0c6QeaNj8ufnCxjaRpmdwTD0mhLrCOdTw7qpioyHpvO2u4kfYls+eMLdn2GcDbYXO7tLnF//w+/R6w7xDk//Ak2V3mJcLeXhoYGHnzwQa655pqt9v3444+59dZb+Y//+A+CwSCWZXHDDTfwne98h0AgMKh/a2srhmFQV1fHlClT+PnPf85ll1026jmXpeQ4/PDDeeaZZ6ioKG0AQ6EQ3/zmN1mxYgVer5e+vj6OOeYYbr/9dlwu16gnJRAIBNuL1/BiqiapfAq7Zh+zcS3TIB/0o7esp2gvjavJsGB6hls+tvFxr8orU6dw9pSJmGvW4n71TfrO+nz/9aZix7IsOpKtSHYJj25ARxv4KmBD/gNFlqh0mawPp1AVmFbp2i65qqYbBMbV4/D46OtoI9bXg2HaMRyOnRJqsKvT19HGlIMO3WuTsW1E2HqBQLA7oys6413jWdazjHxxcEnZoMtAlSGTK2LTN9nWgttJ3utGiSUobJab4yB9Pz7KLmNlbg3/SDzNf7q+xhSvzAdzj+K0N5+k4t9vET36QOQylZcFpwO1L4w3EaTTkaIj2cqEIcJWnIZKIpNnTSjOfoZnm5Wdgl0PSZK44Me3Dhmuks9mGT9rP77xq9/z8j13ll/i/hvfwuH1kc9mufT/7hnUZ3vCVYbCsiyuu+46rrjiiiGdFJuzePFiLr30Uo4++mi++93vAvDQQw9RKBQ4//zzh7zm/PPP55lnnmH+/PkceuihnHjiif1VW0ZDWbvnvr6+Aaeit9xyC3a7nTfeeIO33nqLV199lVgsxs9+9rNRT0ggEAhGg12zE7AFiGVjW++8jeT9FSU1R3KTmmOco8iZE0qnLQ83GjQffSwArnc/QIlEB1xvUx2okkZHspWIWYDoQDUHgKbIBJ0G63qTNIYSFIvbr0ixudxUT55G9aSpIEGsO0Q+O3w86N5KMhLm7Vde3tnT2OkIWy8QCHZ3ArYAlfZKelO9g9qchorXVIilcwMbZJl8IICUz8Nmzm5JkviS/fMY6DTnW3kz8x4AE06aQ8Rw4E/00f764PCDYVEULE1D7QrhVtx0pzvpy3QPvQ6nQXc8y7qe5JgrUwU7B0mS0Exz0EvVdXSbDV9NHV/4/nVc8OPbCNZPGnKMYP0kLvjxbXzhqmvx1dSi22youj7kuGN1qNXW1sbixYu59dZbmTt3LnPnzqWtrY0f/ehHXHLJJf393n33XRYsWMBhhx3GL3/5y/68N8888wxLly7lwAMPZO7cufzhD3/g/fff7x9n2rRpLFy4kNtvv51gMMivfvUrFixYMOrf++3KaPP+++9z5ZVX9p/2VFVV8cMf/pCXXnppVJMRCASCsSBgK5VszRfLKBW7DWxUc8jxxID3T6rLMdVdIFOU+L/8TNITJyDlC7hfe2vQGDbVgSwpdKTbiJEqqTkKA+epqzIVdoPG7jhN3YlRfdDLioI7WEnttJl4a2pJJxIkwn17TcnYcsnlclvvtJchbL1AINjdUGSFcc5xKLJCKp8a1O61yRiaQiIz0O4WPC4KbhfKFvbdp3g4zX4CAM8lX6G70IvbobL6oCMAGPfGGyRy5dvogtOBEo1hxlJoik57ch3pwuB5KrKEz67R3JskFBeHE3sLmmFQM30mF970y0GOjo0l7mumz0QzyqzsMwZUVVXxwgsv8Pjjj/e/KisrueKKK/oPPVatWsXll1/OUUcdxa9//Wu0DUl8AX7xi1/wzDPP9F97wQUXsO+++/aP8/jjj/PKK6/wuc99jltvvZW77rqLDz74gJ6enlHNuywnhyRJA7xBVVVVg7LwF4tF9DKT7wgEAsGOxGt4cetu4tn4mI9dys1hIG2Wm0OW4OJpaQzZoiGm8vIBxwPgfPt95OhgRYldLSVFa5PDJHpaBqk5AExNwWfXWROKs6539Cc5mmkSGF9PzdTpGA4H8d5uMonE1i8U7DUIWy8QCPYEvKaXWkct4XR4kO00FZlqt0EyW2BAk6KQD/qRslnY4hBgnnEgU9R6cuR5JPEMRcsicPKBpFSDCdEOlr0xsArGiCgKlqqidnbjlJwk8wk6kq1D2ni7rqJIEo2hBOnc3h1OuTchyzKyqnL8gm8NeP+EBZcj78DyscOhqir19fUDXqqq4vf7+yug3HDDDdTU1HDNNdfQ19dHKBQiFAqRTqepqqoacK3H48E0zf5xNipE3377bVpaWnjqqaeorq7G5/ONat5lfZcsy+K0007jy1/+Mtdccw1Op5Obb76ZbLYk0V60aBE33HBDf21cgUAg2JkoskK1s3rIUxxVVlGlMl7DlKC1bCb5oB8lPjBhWMC0OG9y6bTl98wiVjcOOZ/H/e+3hxzHrjqRVZXOXIjYuhWD1BxQ2uC4TI3VnXHaIult/TYMQpIk7B4v1VOmE6yfRLFYINbTTTE/tooXwe6JsPUCgWBPodZZi0NzEMsNPmjwOw1cpko8PdD25T0eik4HcmKgfZcliXMcp6GhsSbfzLuZD5EcNjoOLpXZ3ufd12lNlP/gWXA5UaNR1GgMj+6jO9VBODv0qbXfoRNOZGnqjouwlb0IWZapmjSV+jlzAaifM5fKSVM+cwdHOYRCIRYvXkxDQwPHHnss8+fP7389++yzW73+oosu4qyzzuLqq6/m85//PJ9++im///3vR10Bp6zEo4sWLaKhoYE1a9awZs0auru76enp6f9j+/a3v83BBx/M//zP/4xqMgKBQDBW+AwfNtVGKp/CptoASOaSvPeV98oeoyPRQVuimRrHhAHv5/0+1K4epFQay7ap5OgRlXk+7s3zSa/KPVNP4rvr78X11ntEjz2SotMxaHy76iTpKtLTuYJiZxWe2hmD+jgNlULRYmVHFFWWqHKPvsSpoqp4q2qwuTz0tq9nbfNa4n292JxONN1A2gWNqGDHI2y9QCDYU7Brdia4J7C8ZzlObWBJWV2RqfaYNHTFcVgq8kYBm6aSqwxgNK4r2ezNlG0BpYLP2Y/jyeQLPJN8mZnaVAInHkp+0dvs29PEr95pp+74qqEKaAxmo5qjqxvNMxlNLlVbsatODGWgjZckiYDLoLUvhdeuU+OxjcF3R7A7oBkGJyz4FvdeeTknLLj8Mw1RAVi5cuWwbQsXLuz//2AwOGLfLfnOd74z4N+yLHP11Vdz9dVXb/skR6AsJ4fb7ebAAw/kwAMPHLJ94cKFOJ07ppazQCAQbA92zY7f9NOR7Oh3cjRFB0tKi4Uiq1evZtq0aciKTL5gsaojyt8bfkdjfClO1cN/zr4Op7Yp47pls5EPVKC3tZPfzMkhSfCVKRl+GpP5l3cW5wfrqA6tx/3624Q/d+LQ8zTcZNU4obUfYnl9eO2Vg/p4bBp9SYsV7VFkSSLoGhtDZ9jtBOsn4Wpdj8sfIJuIE0/EgVJyLN20IX/GteQFOw9h6wUCwZ5Epb2SzkQnfek+/Db/gDafXcdr14iksvjsm0LwCl4PRXspwXjRMbBC25HGwXyc/ZTmfCuPJJ/hEveXCc/dn8AHH3LER6+xaL8LmVdZnjKy4HKi9kXIR6M4vR56Mp10Jtcz3jl5UMJIQ1UwFIU1oQQuU8NplPX4JtgDcPr8osT9djLq47obb7yxX8oqEAgEuxIBe4CiVaRQHDmWdXMJqKpI1HrtnFz7NXx6kGiuj7833EG+ODAxZSFQQVE3kNIDw0jcusVXpmRAkvjD5JMAcL25CDk5UP66ObqvCiUSp63tIyKZwfk5oLQhsyxY2RGlLzF2n7mSJGE4XVROnEzdzNnUTJuJt6YGSZJJRvqIdodIxaIURGLOvRph6wUCwe6GJmtMcE+gUCyQLQz8/FIUiWq3jaIF+cKmPYCl6+SDgSFttizJnOc4HRWFVblGPsh+QuaEI7CQOKzjUxZ93Euq3OhPRcFSZNRQN5Jl4dZ8hNLtRLJD7wG8do1EJkdjKE5hFFXXBLsXmmky5aBD0c3Rq3j3NspyBb733vDy7scff5xDDjmEysrS6eMhhxwyNjMTCASCUeI1vLh0F/FcHI/h2foFG6+za4z3eTk9dxkPNf+CdfE1PNl8P1+c+PX+E5aifTM1xxbGZ39/gSMrc7xpzabZW0N9uB3X6+8QOeX4oW+oKNhMN/nObpo9q6j3zMCjD0645HcadEXTrOiIMqvWg8emDTHY9qPqOqqu4/D6KNYUyCQTpONxkpE+Uok4xXwORdPRTRNVH5v664JdB2HrBQLBnkaFWUG1o5qORAcBMzCgzWPT8Dt0ehIZ/I5NCsm8z4vaGUJKpbBsA8NDKpUAJ9mO5rnUKzyZfJHp/m/i2W8fnEs+5dTlr/HM1C9xzqTyHMIFlxM1HCUfjaF7PaQLSdqTpbAVXRmo2JQkiaDTpC2cwmfXGV9hH2ZUgUAAZTo5LrvsMtIbTiuHSnpz1VVXAaU/wOXLt6FetEAgEOxAVFml2l7Nyr6V2+TkQIJqt41woo4vTLiEh5v+jw+736DGPo7DqzaFnRT8PordPUjpDJY5cENy7qQMKyMK900/mesX/QX3G+8SPfrwQRum/rFcTtx9ETKRCM3yaia6puEewtERdBl0xTIsb4+yb51nh8lWZUXB5nJjc7nxVlWTTafIJEvlZzOJBMlYFEVW0Gw2NMPcJZNhCbYNYesFAsGehizJ1Lnq6En3kMwNVGdIMlR7TMKpLJlcEUMr2THLNEqHGK1t5Iew2ceYh7Mku4LWQjuPJZ7j0mOPxLnkU45rXczf1pzCEVUGtfYy1BaqiiXLqF3dFNwunJqHvnSIrtR66hyTBh0kaIqMy9Bo7I7jtmljftAhEOxJlLUrfeqppzjyyCOZO3cuzzzzDCtWrOh/2Ww2XnzxRVasWCE2PQKBYJfDZ/owFIN0ftuqk9h0hRqPSY0xg1PGnQvAs+seoiGyrL9P0WGn4PehxAeXqjVVuHh6mndqZtHkrkZOZ3C/8e7wN9wgXfWFcxQKWdbGGohm+wZ1kySJSpdBJJljRXuUVHbHl5WTZBnD7sAdqKRm6gzqZs6iduoM3MFKrGKRRF8v0Z4Q6XiMgqjUstsibL1AINgTcetuap21RLPRQQ5cp6lS6TSJpbcISa3wUdR1pHRm0HiKJHOu43RkZJblVvFeVZjUtMkoVpEvrv43DzcalFsIpaTmiKBEY8iSjFP30JVqH9L+A7htGtl8kaZQnFyhOGQfgUBQppNj3Lhx3HXXXVxwwQUsWLCAX//61yI2VyAQ7BY4dScVZgXRbHSbrw04Ddx2ndmeY5kbOAILi4fW/IHudGd/n3ygAkvThtwITXUXOWlcgQdmlNQfzn+/MyiHx+ZslK5WpDXyxRzNsQai2fCgfpJUqrLSHc+wsiNKOrfjHR2boxkmzgo/wfpJjNtnNrXTZ+KvHY+sqqRiUaLdXSSjEfLCTuxWCFsvEAj2VGodtTh1J4lCYlBbpdvA0BSS2U1O+qLdRqHChxIf3B+gVq3iBPNIAB5PPk/nsQcDcGrzu7R3pfmwp8yk3f1qjh4oFjdUV5FoT7aQKw79+Rt0mnRE07T2Dp/rSyDY29kmffGZZ57J448/Tnt7O6effjpvvvmmiMkWCAS7PJX2SorFIkVr2049VFWixmNStODz4y5ivGMyqUKS+1f/H+l8aXNRdDjIVwyt5gA4Y0KWtVNns85ViZpO43pz0Ug37JeuejUvuWKW5lgDsVxkUFdFLiVN64imWdUZI5vfOSc6iqph93ipqBtH3cxZ1M2YReXEyRg2O5lUkmh3F4lwH9l0CqsoTp12B4StFwgEexqmajLeNZ6MlSFfHKg4NHWFao9BIlMYoMDI+31Yiow0jLP3eNt8qpUgCSvJ32uWkxlXi1HIcWbjGzzSZJAp8/yh4HKiRCIo0dI+wq17iebCdCbbhuyvyBJem87angS9Y5iIXLBrUvyMD7L2FLY5iNrn83Hrrbdy4403cuONN5JKpXbEvAQCgWDM8BpenLqTeHZoR8RI+Ow6QZdOIg0XTv3P/gzo/2i8q99pkg9WYKkqUmawmkOV4eIZOR6ecQIA9lffHlL1sZHNpatew0+2mKE5tpp4brASRZElKl0mbeE0DV0x8jtZuirLCqbTiaeymprpMxk3cxbVU6Zj9/oo5vPEenuI9XSTSSQoFoTR3pURtl4gEOxpVNoq8ak+etODK5j4nQYuUyWe2UzN4XSQ9/lQYkPvHVRJ4TzHGUhIfJRbztKjJgNwZtObpBNZnmvVh7xu8ECl3FpqqBuKRWRJxqV56EqvHzZsxWGoFIuwJhQnkxf2dE/FyhehuOGrYJvY7kxxRxxxBE8//TT33XcfVVVVYzkngUAgGFM0RaPaXj0o6VhZSFDtNtE1GRUXF037L1RJY2XkE15sfQzYoObw+1BiQ8ta6xxFfEfsQ6sjgJFOIf37/eHvt4V01Wf4yRQyrI2tGtLRoSkyQafBut4kjaHELlNaTpIkdJsdlz9A9eSp1M0shbV4q2uwJEiE+4j2hEjFYqI87S6MsPUCgWBPQZEVqo1qdEUnlo0NaNNVmWqPSTpXoN+MShKFgA8LCYbJNzVereVY83AAfl+/hEygAmc2xanN7/LSeo3OVHkquILLidIX6XeoGIoJFrQnWgaVsN+I32nQE8/Q3J0cMlm0YM+g++4lO3sKuyWjSodvGAaHHHIIul6mp1IgEAh2Ej6bD03RyBSGV1EMh91QqfGYxDM5au0T+eKkiwF4veNffNxTSiaaD/ix1BFkreOKvHrAcQB4//0WxczwEtMtpaslR0d6WEWHrsr4HQZNPQmauuO75GZnY2nawPh6xs2cTe2MfQiMq0fVdVKJONHuEIlImFwms0vOf29G2HqBQLCnYFfsTHBNIJ6NDwpb8dl1vHaNaGqTU6HgclLwuodVcwCcZDuKoOwnKiV45XAXAOc1vgaFAg83lZmEVNOQJFC7e9h4gVv3Ecn10ZUaPmylwl465AjFt31vI9i1sfJFEh92kl0XI7G46zNVc2SzWU4//XTefXdwwvxYLMZRRx3FY489NuS1zz33HDNmzNjmcccaUfNPIBDsFbg0FxVmxaDTm3IJOA3cNo1oOsf+/nkcXfN5AP7Z9Gda400UHfZSbo5hNkKyBLNO2ocORwWuTIK2fy0e/mZbSFcBvLqfdCFFc6xhSEeHqSl4bRqNoQTNPYld2lGgqCp2twdfTS11M/Zh3MxZVE2ags3lIpdJE+vpJt7XQzaVFHk8BAKBQDCmVDuqqbRX0pPqGfC+okhUe0wKlkV+o5xDlskH/UiFIgwTZqlJGuc6TkcC7pvZStplw5uMckLrhyzrU1nSV14S0rzLidIbRt6wj5AlGafqojPVNmRuLihVglNlicZQ4jOptib4bIm9vK709aXmz+yemUyGK6+8ktWrVw/Zfvvtt9PV1TVkWzQa5Wc/+9l2jTvWCCeHQCDYK5AkiaAtSL6Q3+YEpACaKlPrsZEvFskXLE6sO4uZ3v3JWznub/gdsVykpOaQh1dz+B0y6+YfDcA+771Ba9/wG5ItpauSJG1wdCRpjjWQyA121th1Fbep0dCVYH1498ih0F+eNlgqTztu5myqp07D5S8li431lfJ4pONxkcdDIBAIBKNGlVXq3fUYijEoV5fXpuN36APVHG43ebdr2EorAJO08RxpHEJelXjq0NJ7X2tciGQVebjRIFfOtkPTkCwLNbRJzWGqdopWgfbEukHKk41UOHTCyRxN3XGKu0jIqmB0bFRxFCKl/WQhkv1M1BwNDQ2cd955rFu3bsj2999/n3feeYdgMDhk+2233cb48eO3edwdQVlOjrvvvpvOzs6tdxQIBIJdGJ/pw6k5SeSG36iMhNeuE3AahFNZZEnmnMmXUGnWEsuFub/hDjJ2vaTmiA4va608Zl/6nF4qMjGanv+EYQ9ehpCu9js68iVHRzI/+D4OQ8WmKazsjNERGb5c7a6KZpq4KgJUTpxE3czZ1E3fh4raOmRVIRkJEw2J8rQ7CmHrBQLB3oLH8DDBNYFYNkahuMkQSzJUe0xkGTIbPROKTKEygJTL9asrh+Jz9uOokL08vX+WtKlQEe7mhNBSujMyL7RqZc2r4Hah9oaRN3OouHUfkWwPoVT7kNdIkkTAqdPal6IztvvZ/b0Fy7IoZgtlvWCTimMjG9Uc5Y6xPYreRYsWMW/ePB566KFBbdlsluuvv54bbrhhyPDVRYsWsWjRIr71rW9t07i5XI7rrruOefPmMXfuXL71rW+NyV5ELafTww8/zC9/+UsOOuggzjjjDE455RQ8Hs+oby4QCASfJbqiE3QEaYo04dJd23y9JEOV2ySSzJHKFbBpNi6a9l/c+enPaE008kTzXzk3cB5qbx9SNos1hBGQNJXUCfPxPfE0py57hfsOPJAvTR/aEBU2SleDcYru0nwlScJr+OnLdNMcW029azp21THgOrdNo5i0WNERRZah0mVu81p3BVRNQ/V4sXu8eGtqySSTZBIJEuFeMskkyWgYRdXQTBuaYYgyp6NE2HqBQLA3Ue2spjfTS2+6l6B908m001QJOA3awymCWsl+5j0uNKcDOZ7ot8dboks65zhO44/F+3nmwAJfegu+0bSQl4L78a/1OvMq8wTMkR88LU1DKhZRu3rIOh0gSSiSgl1105Vej0v34NTcg64zVAVTU1jTFcdlajiNsh7xBJ8RlmURuvMTss2Dw423xPuFKQD9Ko6NFCJZEu91ABB+Ys1Wx9Hr3QS/NWeb9kYXXnjhsG133nkns2bNYv78+YPaNneAaNpgh95I495///2899573HPPPZimyY033sjNN9/Mb37zm7LnPRRlKTmef/55HnnkEebOnctdd93F/Pnzufzyy3n22WfJDFEyUSAQCHZV/KYfVVLJFrZPCeA0Vao8JvF0HssCv1nFBVMvR0bmo563eT3x1ogl5wByhx1AyuUmkI6iL/qYFeGh43WtDdJVbTPpKpQcHT4jQCIXozm2imR+sDLFa9fBgpUdMXoTu7/qQZYVbE4X3qpqaqfvQ92MWVRNnobd46WQyxLr7SbW200mKcrTbi/C1gsEgr0JTdaY6J6IIimDFJ5VbhNTUzfluVBVcsEAciY7oppjmjaJecZcnjtYJqtCRXsrp6VWkStKPNJklDWvgtuJ2tc3QM1hU+3kC3naky0Uhglb8dl1EpkCjaH4LlNpTbBtKB4d+9xKYq+2DNkee7UF+9xKFM9nmwi8oaGBBx98kGuuuWbI9t/97nfMnj17SAfI1mhtbcUwDOrq6pgyZQo///nPueyyy0Y75fKUHACzZs1i1qxZXHnllSxdupR//etf/OpXv+K6667jhBNO4PTTT2f+/PkoSnnJdQQCgWBn4NbdeE0vkUwEv82/XWNUugz6Elmi6Rwem8YU9z58bsL5PLPuAZ5vfYTqcZcyp1dHyuWwhvBoo6okT5iP7fFnOW/VQq5acTA/PLiAfYhP5ILbVVJzVAYoupz975ccHUH6MiHWxRqod03DptoHXOt3GnTF0ixvj7JvrQePvTy57K6OJEkYdjuG3Y47ECSXzZBJJEjHYiQifSQiYaxiEc0w0W02FFWcaJWLsPUCgWBvYmPYyuq+1dhUG7JUOv+16QpVboPmngQ2TQEJCj4PRbsNOZmi6HQMO+ZpthNY4Wpg4Zwwp35o8ZU1C3luv+l81KuyrE9htm9kR7yl60jRGGr3JjUHgNvwEc500615qbLXDXlt0GXQFk7jtWlM8A8/R8FniyRJBL81B2tryVksSH7cNUjFsZFCJEtySTdVVx4MWxFoSJo8JgpXy7K47rrruOKKKwgEAoPaV61axcMPP8xTTz21XeOff/75PPPMM8yfP59DDz2UE088kbPPPnu0096+xKP77rsv3//+93nppZf4y1/+Qm1tLbfeeitHHXXUqCckEAgEOxJJkqiyV5Er5La7AommytR4beQKxf4M7IdVHs9BgaOwsHiw/a+0e/Ijqjnih84l73JSmQpz8JoPebBx6BOezaWrW9ahK4WuBIjnozTHGkjlk4Our3SZpLIFlndEiaVzg9r3BDTdwOmrIDChnnH77Evt9Jn4x09A0VRS8Wgpj0ckTD4rytNuC8LWCwSCvYFaZy0Be2BQtZWAy8BpqsQyJeWEpWnkg37kVGqQPd4cm2zyJftpPDVPpiCBd80aztfWAvBwo0E5uSNLuTkGqjkUScGmOuhItQyZfBxAU2RchkpTd4JIcs+0+bsrkiQh68qIL0mRBuXi2JLYS81IShljjVEIb1tbG4sXL+bWW29l7ty5zJ07l7a2Nn70ox9xySWX8MILLxCJRDjppJOYO3cul156KQBz587lySef3Or406ZNY+HChdx+++0Eg0F+9atfsWDBglHv10Z1vNXb28uKFStYsWIF7e3tzJw5c1STEQgEgs8Cn+nDrtlJ5BLYFfvWLxiCig1JSHsSGfyOUj6IM+ovIpRuZ128gXuTj/I9voCey8FQag5NI3rckVQ8+Tznr3qZSyYcwpwKlYMDg2WoG6Wr+bh/gJoDSiXmvLqfcLaH5lgDE11TMbdQdFS6DNqjaVZ0xJhd68au77nKho3lae1uD76qGjKpDXk8In1k4nHy0SiyoqCbJpphIsmiyNjWELZeIBDsyWiKRr27nmh3lGQuiV0r2VBdlan22GjojOMwVGQJ8hVe1M4QcipN0W4bdsx99Kl8XDmHt2Z9xFHLLM5c8QrPzKynMy3zcpvGKeNGdkBYuo4Ui5fUHJvZfbvqpDcdoiPZwkTXdBR5sD132zQ6o2kau+PsW+dBU4Sd2x3YsqLKcGystOKYW4mk7vifbVVVFS+88MKA97761a/y1a9+lTPPPBPDMDjjjDP62z7++GOuvvpqHn/8cfz+rSumH3/8cXRd5/Of/zyf+9zn+Oijjzj//PPp6ekZUjlSLtv8nens7OSvf/0rX/3qVznqqKO4//77Oeigg3jmmWd44IEHtnsiAoFA8FlhKAaVtkoS2e2rsgKbMrCrskw6V5KeqrLKhVMvx6NX0J0L8RdtIXJs+CRT8XkHUXA6qE72cXzLB/x9jUFfZrDn3dJ1pEJhQKWVzdno6IjnwjTHGkgXBpaPlSSJardJbyLDyo5Y/3z3dCRZxnQ48VRWUTN1BnX7bCxP66dYLBLv6yHWHaKQF6ddWyJsvUAg2JvwmT7GucYRyUQGlJn32XW8do3oBiWkZRglNUdisHJyS860n8wLh5dCRtxLP+VrnjYAnm3Rh7T1W1JwOQdVWgHw6D56MiF6M6Fhrw04DTqjadb1bH2egl2Hrak4+vttqLTyWaCqKvX19QNeqqri9/upqqrC6/UOaKuqqgKgvr4ep9O5ldEhFovxs5/9jLfffpuWlhaeeuopqqur8fl8o5t3OZ3WrVvHCy+8wAsvvMDSpUupq6vjtNNO40c/+hFTp04d1QQEAoFgZ+C3+WmJt5ArbP8DrtNUqXIbtPQmMdVSzK5T83DR1G/zpxU/Z1WukaestzktfyoMkRfC0nWixxyB75kX+crql3l5/EH8tcHgO7PSbKky3ChdzQcGqzlgg6PDCPTn6Jjgmoqp2DZrl6hy2eiIpJAliX1q3OifwQnAroIkSeimDd204aoIkM9mySQTpOJR4r19SCmRWFPYeoFAsDczzjmOcDpMb7qXgK10gqwqpUOCVV0x8kULVZY2qDm6kdJpLHP46mV22ca8SafzwZSHOGiNxYEfP8/kmRfTGFN4dK3OJTNGtjul3Bxx1O7eUm6ODSiyil110J5swaG5sKuD9wSKLOG16TT3JvDaNfzO8pKeCnYO5ao4NvJZqzl2JBdddBEdHR1cffXVRCIR9t13X37/+9+POvdXWU6Ok08+mUAgwOc+9zmuu+465syZM6qbCgQCwc7GbbjxGl4i6cioxql0m4STOWLpPC5b6SO11jGBL01awINr7uRV6SNqon4OrDh8yOtjhx+M+9U3qYz3cELbYl6UD+a1DpVjawaGrQwnXd0cWZI3JCPt7k9GaiibNmCKLFHlNmmPpFBkiZnVrq3lrdpjUXUdVddxeH14Kmvozgo1h7D1AoFgb0ZXdOrd9SztXkoqn8Kmlg4KvHadCrtBXzJLhUPHstnIByrQ2zvIj+DkANhPn8mrR0/ioDWNBD9czlfmd/LTWA3vd2scVZ1nhmdkZWXB5SgdcAQrKDo2OTrsqpPeTIiOZCsTXdOQpcEPhA5DJZHN09idwGGoaLv3s/AeT7kqjv7+LzXjmFu5g2YDK1euHLZt4cKFw7bNmzdvxGu3bJNlmauvvpqrr7562yc5AmX9ut977738+9//5tprrxWbHoFAsEcgSzJV9irShfSokhvpqky11ySTz/cnIQXYt+Jgjq09HYCHrVdoTg8tLbQMg+jRJQfIgjUvIVtFHl1r0JEc7H4YTrq65bp8RoBwto/m2GoyhfSAdlWRqXSZtPYlaegSZeYAZEVBksTuT9h6gUCwt+O3+fsVHRvDVjaGp0oyZDdkDS34vViqipTd+sn7QTPPZvU4GbUA9vce5ejqklP9oUadwtaKbRgGUi6H2t07qM2t+ehJd201bKUnnmFdT1Ik3t5FsfJFkh91UYjlQJbKfhViOZIfd2GVk8l2L6QsJYeqqnzwwQdlDXjIIYeMakICgUDwWeE1vThUB6Hi8BuEcqiwG/iduf5Tno0cX3smnclWloc/4i/JR/mufgke2T3o+tgRh+J+7S28fd2c37eYByoO4t7VJj/YL8Xm+cKGk65uiSzJVBgBejPdSPE11DunoiubpKqaIhNwGqztSSJZFkWx8REgbL1AIBAAjHOPI5wJ05fu6y817zJVgk6djkiagNOk6HCQr/CidfWQD1SMOJ5LdtJ+7GFM+9tbTHuvmcgxa3i/eyZtSYVXOzROqB1ZSVhwOlF7NoSrOjYlFldlFVOx0Z5owaG6B5WRh1Koqt9hsK43icsQzvxdEato4Ti4GsfB1dt1fTFb2GtVuSNRlpPjq1/9almDSZLE8uXLRzUhgUAg+KywqTYCtgCfFj8d1TiyDDVek0g6SzpXwNRKslFZkjln8iX8celNdGY7+HP0Yf7T83U0aWC1Fcs0iB11GN7nX+HcFS/x5PwDaI4rPNeqcfqEgZufgsuB2tM7SLo6aE4bHB19mRASEhOcUwY4OgxVocKu09iTIB/PixMegbD1AoFAQCk5eb2nFLaSzqcxVROkUkn23kSOVK6ATVPI+ytQu/tguCpqm1G974l0BT+gMpQh9tYjnHnglTywxsFT63QODuTx6MPbYMs0kOJxlJ6+AU4OAIfmoifdSWeylQmuqchDqBJNTSGRKYWtlFW/VvCZIuujyz0x2uv3VMpycqxYsWJHz0MgEAh2Cn6bHxmZfDGPruhbv2AYnKZK1YYwkI1JSAEMxeSi6Vdw57Kf0lrs4B+Jp/my46xB9cujR87D/dpb2LpCXFlYzE+lg3m2RWdfX4GJrk2bEsswNuTm6CU7gpMDBiYjBQY5Omy6grug8km0wLK2KG6bjq4paIqErsho/S9pzOqtC3ZdhK0XCASCEn7TT52zjuZoM9WOaiRJwm6oVLlN1vUksKkKRZeTgteNEo5QqBi5EoSkyKSPPw4e+hdHLorw1PzXqXeeRHNc4Z/NOhdPGzkJacHpQO3uoRCoGFS61qNXEMp04NI9+M2qIa+vcOis70sQi+VJZPK47eLBWLBns126pVwuR3d3N7mcSNQmEAh2bzy6B4fiIJaNjXqsSreJw1CJZQYmDa2wVXJRzdeRLZnF2WW8mn570LWWzSR61GEAHLzoFQ7xZygice8qk+wWeck2SlfLKWGnSApeI0BvpouW+BqyhYEbKYeh4tAlumIZVnfFWbo+zOJ1Yd5f28d7Tb0saurh3aZePm4Js7ozRktvko5Imp54hmg6RzpXEHk99lCErRcIBHsrkiQx3jUej+GhL9PX/37QZWA3VOKZPEgS+aAfybIgnx9htBLW3ENIeGx4E5Bd9CqnTiqVlH2nS2NNdORHMss0kbNZlCFyc6iyhiEbtCVaSOeH3hdIkkTAZdCdLPLhujDrehLktpYQRCDYjdkmJ8ff//53vvjFLzJnzhyOOuoo5syZw1lnncXf//73HTU/gUAg2KEoskJQD5K38qTyqVGNZWgyNV4bmfzgB//66gP5gu1EAJ5LLWR5dvWg62PzD6No6OjtnVya+QSPXqQzLfPo2oEKE8ssJSJTevoGjTEUiqTgM4L0ZkK0xNeQKw5MlGaqMkGXQY3HRq3HTq3HRsBp4DRVVFkmX7DoS2RZ25Pk0/YIn7SG+aC5j/fW9vJuUw/vNvbw/tpePm2L0BSKsz6coiuWJpzMksjkyeaLIhxmN0LYeoFAIABTNZnonki+kCez4YBAV2VqPCbpfJ6iBQWXi7zbjTJCQvB+FIX0sccAcNq7ed4tPsERlaVxH2w02Np5QcHpRO3uRUoN3qs4VDepQpKO1Pr+hKlboikyAbuCLMGn7VE+bgnTHc8I+yzYIykrXKVQKHD55Zfz/vvvc/bZZ3PppZfi8Xjo6upiyZIl3Hrrrbz22mv8/ve/R5bL95u8+OKLfPvb3x7w3imnnMJvf/vbbVuFQCAQjAKv6sXn8rE2thbVpqIpI8fWjoTfYdDnyBJO5gYkIUWRObTuZDob1vOWtIz74//kO54FVCmB/i5Fu43YkfPwLHydylde42tfm83/W27ntQ6dORUFZvs2STpGkq4OhSIpeHU/vekNoSuuqWjy8OE5iiyhyArGMFbCsizyRYt8wSJfLJLMFIikchSKFhYWIKFIEqosoSoSqiJj0xTsuoKpKf1hMJoq94fGKLIIidmZ7ChbD8LeCwSC3ZOALUCts5aWWEt/2EqFw6A7niWWzuGxaeQr/airI1AogDJyGEji0ANxv/Qa1eEUVUvX4Z77FvaeY2lJKLzRoXJ0zfCKEMtmosQTqKFechPqBrRJkoRH99Gd6sCteakwg8OO47ZpuG0yPYkMH60LU+czmVDhwDGcwRcIdkPK+m3+y1/+QkNDA8888ww1NTUD2r74xS9y6aWX8vWvf5377ruPiy++uOybNzQ0cNxxx/HTn/60/z3DMEa4QiAQCMYeSZIY5xpH1sqyPr6eKkfVkMm7ykGWodpjI5LOkckVMTYrTF/wuDnD9Xk642HWsJ4/xx7iO+4F2OVNToro0YfheuMdjPUdHNyxnGOq9+O1Dp37VhvcMDeJY4P/xTJNlFgcpbuX4habneFQZBWvUXJ0SJLMeOdkZLYvLleSpJKTQgGGGaNQtCgUS06QXMGiL5slFCtVc9l4bqTIEppccoLoqoxNk7HrKvpmzg9NlfvzhIjcIDuOHWXrQdh7gUCweyJJEhPcE4hkIoQzYXymD1WRqHGbrOyMlUrHe9wUXC6URJKC2zXieJaukzjyMLwvvMJZbxe5bp+XOaF+H55qrObxdQYHBvI4RzhnKTg3JR+3bAMPODRZQ1N02pMtODQXhmIOO44iS1S6TNK5As09SbrjWSb67VR7bGiKqMIi2P0p67f4n//8J1dfffWgTc9GampquPrqq3n00Ue36eZr1qxh+vTpBIPB/pfbPbi8okAgEOxoVFllsncyAVuAUHJ0JWXdNpUqp0k0nYXNVaCKDFWVXFw8CZ/kobvYx9/ij1HYTFpadDiIHXEoAJ6XXuNL9RmqzCKRnMzf1xhsriodSbo6HBsdHd3pTlrijeSLOy7fgiJL6GrJaeGxafidBlVuc0NYjI0at4nfrmPXVWQkUtkCXdEsDV1xlrVFWdyyMTdID4uaenmnsZeP1oVZ2RFlXU+S9kiK7niGSCpHKlsgL+KLR8WOsvUg7L1AINh9sak26t315Ao5soVSuKfXruN3GERTOVAU8pV+pGwWilu3Q7EjD6Goa0zsgn0as7Q6HqfWnieZl3iieWTnr2UzkTNZ1GHCVZ2qm2Q+RmeytawwFFNTqPPakZBECMtOJpPJkM1mt94RyGazZDIjJ6sdDdlsltNPP5133313UFssFuOoo47iscceG/D+v/71L0455RQOOOAAFixYwPr16weM9+Mf/5hDDjmEI444gl/96lc7/HesLCfHunXrmDNnzoh99t13X1paWrbp5mvWrGHixInbdI1AIBDsKAzFYIp3Cg7VQW96cHKvbaHSY2AzVOLZgdLTgseD6a7iP/g8Ohqr8008nXxpQJ/oMYdT1FSMljbcDQ18Y3oaGYsPejTe694kwLNspURkamjb5qrIKl695OhoTTRRsLaeMG1HIEklBYepKThNFZ9d3yw3SOlV6TZwmzq6IlMoWoSTWVp6Uyxvj/JJa6Q/N8jGBKnvre1l6fowjaE4rX1JuqJp+hJZ4pk8mXxBbNxGYEfZehD2XiAQ7N4E7UFqnDX0pnqxLAtJhiqPiSRDNl8k7/FQdNiRk1tPCF6024kfdjAAX3zHoiG/lrkT3wHgjU6V5tjIj2cFp33DAUd6UJskSbg0L13pdsLZnrLX57FpVLlsRFI5PloXZkVHlERm5+wN9lYkSWLdunWsXbuWQqFAJpOhuMFpViwWyWQy5PN51q5dS0tLyw5TtmYyGa688kpWrx6cOw7g9ttvp6ura8B7H374IVdddRXf+MY3eOyxx9B1nSuvvLK//aabbuKtt97i7rvv5pe//CUPP/wwDz300A6Z/0bKCldxuVx0dnZSVze8JLqtrY2Kioqyb2xZFk1NTbzxxhv84Q9/oFAocOqpp3LFFVeg6+WXcSwUClvvVOYYYzHW7ohYv1j/5l/3NrZcv12xM9E9keU9y4mmozg153aNq8sS1S6DxlAcU5WQN+abkCFXWUHN6gjnO0/nr6l/8kZmEdVKkEOM/QEoOuzEDjsYz+vv4HnpNSb852Q+N17mmRaTB9YYTHblqDBKD+s5hw2lu4dcwEvRtvXcHBuRJRm35qMr2U4ql2VKfiq6uv0ldHckilxShRiqxFC++XyhuCE/SJFEOk84UcoXUsIqOVNkGVUuhdiYmoJNU7DppdwgChbZgjWm9mR3ZEfYehgbez9W31fxeSfWv/nXvQ2x/tGtf5xjHL2pXsKpMB7Dg0OTqLBpdMYyBJw62UAFetO6Up6srTyAhufPw/Xmu8xaV2Taeot3615kbtUMFncGeaBR5/v7JRk2TZVpoIV6kHt6yNUNVt6psoaMwvr4WkzZ3l86fvMH5uHwOzQyuQJNoTidkfSGEBZzjwhhGcvf/x3xN6TrOqqq8uc//xlVVZk0aRIzZ86kvr6e5uZmVqxYQVNTE/l8nosvvnibnpfLpaGhgauuumrYA6H333+fd955h2BwYM6Xe+65hzPPPJMLLrgAgGuvvZavf/3r9Pb2Issyjz76KPfee2//QcqCBQv4+OOP+/vvCMpychx33HH87ne/46677hrSa2RZFnfccQfHH3982Tdua2sjlUqh6zq//vWvaW1t5aabbiKdTnPdddeVPc6SJUvK7vtZjrU7ItYv1r83s+X6U5kUq9KrcKku9BESdI5EoWgRjebpaC/iNjblrZAKBdzJBLV9Ood75vK2tpjHEs8h90GdVapx3zNzKge+9R5mcyvJRR9ywPg6FhvjacvYuHuZzFeq1/fvocy+CIlchmTV8InGhp2jlSdWjPD68pfxqn4csnu785HsqhQti6IF+eKGPCHWpq9ggSUx3q3s9X8DO8LWw9jY+7H+2eztP2uxfrH+vZnRrD+ejbM2tRaP5kGVVNL5Il3hHL2yhL1YwBOLQixG3jZ8PoyNmDOnUrlsFee9rfKzczJk3P9A7/oma+MqL6xOcoArOuy1SjqDvGw5kUSCgjF4j2JZFpFiLz1KmKBWO+AzvaGhoay1dmaLfLrSwmNK1DhV3MaekRdrV/79HzduHKqqks/nWb169ZBqCk3TGD9+/A65/6JFi5g3bx7f+973OOCAAwa0ZbNZrr/+em644QZuuOGGQdf9/Oc/7//3+PHjWbhwIQAvv/wyTqeTQw89tL/9sssu6///aDTKtddey9tvv40kSRxzzDHceOONOJ3bd8i4kbKcHFdccQXnnnsuX/va17jsssvYd9998Xg8hEIhli1bxh133EEkEuH2228v+8Z1dXW8++67eDweJElin332oVgscvXVV3PNNdegbCU78Ub222+/svsOR6FQYMmSJWMy1u6IWL9Yv1j/4PUXrSKN4UaaY80EbUFUefuyjtemcqzqiOEwS8k0N6J6vJirGznTdzLxdIoluRU8a77Ct93fwCd7AIgddhCeNxcx+cMldMw7iEt9BW7+2KIp7WCFNIHjakqxm7LXiz+fJ1VZiVXGxmpzisUi69Y146l2YZFB1QsEzCBu3bfHOTuGoz2cJNvTOqb2ZHdkR9h6GBt7P1afT+LzTqxfrF+sfzTrL1pFVvaupD3RTrWjGgB/X5J1fWkCTg3d4cBYt55c0L/VsbKnnoD16Sr2X51hfLdGS2AdB036gLcbD2VhuJKjJ9uxD7f1sCy07l58DseQag6AbKGaRC5GlTuA1/BTLBZpaGhg6tSpZVfIKhQtehNZ8paFzWtjfIV9t63CMpa//9tj6y3LIpcbOQ9asVhk0qRJw4aKAEycOJFcLrdVNYmmadvslLrwwguHbbvzzjuZNWsW8+fPH/B+NBolEolQKBT4j//4D1asWMGcOXO48cYbqaqqoqWlhbq6Oh5//HHuvPNOcrkcZ599NpdffjmyLPPb3/6WUCjEAw88QD6f5+qrr+aOO+7gBz/4wTbNfUvK+i0NBoM8+OCD/OQnPxngeQGQZZkTTzyRO+64Y5slrF6vd8C/p0yZQiaTIRKJlD2Woihj9kE9lmPtjoj1i/WL9W9av4LC5IrJ5MjRmeykyl61XScYPodBlTdPWzhFpWuTA6Lo81L0eDCSKS5wn0l3tI/2Qid/jT/Kf7q/ji5pxI6bj/udD7A1rcPWuI6aKRP50sQMDzaaPN5ssI+3QK3dArsdpasbvS9Czm7ftgnKIEsKPjOAZRWJ5SLEYhE8RgWVZg0u3bvHOzs2bvb29r+BHWXrYfT2fqx/Nnv7z1qsX6xfrH/71q+gMMk3iVg+Rjwfx224qfLa6U3lSeUs1IoKrK4elHRmUPWTLSlUV5GaPRP70hV88/0A150aotF8jirHDDoTHp5pMTl/8jCJKCWwnA707j6KwQDWENWqTNVGppiiK70el+5B2XBYI8syilze+hUZqj0q6VyBlnCavlSeer9jtw5h2Rm//5Zlcc8992w1p9Vxxx3HtGnTRnRyTJ8+nXfeeYdXX311xLHGjx/PggULxkR909DQwIMPPsiTTz45qC25IQ/NTTfdxPe+9z2++93v8pvf/IZvfvObPPbYYySTSZqbm3nwwQe55ZZbCIVC3HDDDdhstv4EpQ6Hg3HjxmGz2fjNb34z6vlCmYlHAaqrq7njjjv6Y2pvu+02/vCHP/D666/zm9/8hsrKym268euvv868efNIbVYVYPny5Xi93u3aQAkEAsFYo8kakz2T8egeQqntrLgiQbXbxK6rxDdP4qUo5CsDSLkcuqXyDee5OCQ76wsdPJx4CsuyKHjcxA89EChVWgE4pjrPLG+eXFHiz6tM8htCa4tOB2qoBym9/dm2N1Zeces+YtkwqyPLaIquIJLto2iJyiV7A2Nt60HYe4FAsGfh0BxMdE8kmUuSL+bRVZlqt0kqm6dgmuT9FSjxRFljRY4rnYpP+7iTWXE/SStF5YQnAHi1XaM1MfyjWtFmQ06nUXvDw/ZxaV5iuShdqbZRJd7eWIUFJD5tj/BJq6jCsiNoaWlh3LhxI/apq6ujtbX1M5pRyUFz3XXXccUVVxAIBAa1b3QYnXvuuZx11lnMmTOHX/ziF6xatYqPPvoIVVWJx+P88pe/ZO7cuZx88sl861vf6k88+rWvfY0PP/yQww8/nMsvv5wlS5aMSaLybdYb+f1+jj766FHfeO7cuRiGwXXXXcd//dd/0dLSwm233cYll1wy6rEFAoFgrLBrdqZ6p7KsZxmRTASP4dnmMUxdocZj0tQdL5VL3eBUz3vdqC4XSjyBz+3la85z+EPsb3yc/ZQapZITbPOJHHckzkUfYGtowmhqJjOpnq9NzfCTjxTWJRSebdE5sz5L0Waidveg9vQOK10tF3WDsyNfzBHO9tGX7cGn+wnYanBr3j0iJlcwMmNl60HYe4FAsOdRaa+kN91LZ6KTKmcVfodBdzxDLJ1D9fuwunuQMpkhFRabk50wjvSUiZhr1nLZh5VceXQva/mUabWLWd02lwcbDa7aNzV0HlNJomi3o3aFyFd4h7yXLMm4NA9dqTbsqmvU6/bYNJyGSk8iQ18yTJ3XZEKFY7cNYfmskCSJBQsWbDVcRZIkPvnkkxH7dHR0cMEFF4yYQBa2L1xlKNra2li8eDErV67k1ltvBSCVSvGjH/2IZ599ljvvvBNN05g8eXL/NT6fD6/XS0dHB8FgEMMwBiQ1nzRpEu3t7QAcfvjhvPbaa7z88su8+uqr3HDDDbzxxhv84he/GNW8d5rOyOl0cvfdd9Pb28uXvvQlrr32Ws4//3yx6REIBLscXtPLFO8UMvkMydzWy8MNhd9p4LHpRFKbSU9VlXylHymTgWKRydoEzrafCsC/Uq+yNLuSgs9L/OADAPC89O/SfAyLC6eUFBvPtWo0RuXSZsdhL6k5xqh2uipr+Aw/bs1LONtLQ2QZjdEVRLN94vRGUDbC3gsEgj0NRVaod9djqAbRbBRVlajx2MgVimRtNvIV3m1Wc1QvWsGpxUMAiHqeRlfjNESVAaXjt6RotyGnRlZzGEopVLYj2ULeGvkhuxwUWaLSZeIxNdb2JFm8ro+W3iS5glB8joQkSei6PuKrWCyyYsWKEcdZvnw5hUJhq2ON1YFUVVUVL7zwAo8//nj/q7KykiuuuIKf/exnqKrK7NmzB8y7t7eXvr4+6urq2H///clkMjQ1NfW3NzY29js9/vznP7Ns2TK++MUv8pvf/IZbbrmFF154YdTz3qlut2nTpnHvvffuzCkIBAJBWVTZq0jlU6wJr0GTNTRF26brVaW0AVrVGSObL/YnIc17PWguJ3I8QdHtYp55IO2FLt7MvM+D8Sf4tvti1OOPwvneYmyr1qA3t5CtH8/BgTyf9OZYFNK4d7XJtQckMW22kpqjN0yupmrM1l5ydgTIFXOEsz1Esj14jQABsxqX5hHKDsFWEfZeIBDsaTh1JxM9pZLzdtWO165T4dCJpHLo/grU7l6kXA5LG3m/kJ4+hUxdNcb6Ds78UOX9QwN0FbuZMOlJGlZfyKNNOvv58tiGemqTJIp2G2qom3yFD2uISisAbt1Hd6qDXN4iX8yXnZNjJExNoc5jI5rO82l7hK5Ymnq/A79j7B6w9zYURRngDBiKtWvXoqqf3SO8qqrU19cPes/v91NVVdprfuMb3+Caa65hn332Yfr06dx+++3ss88+zJkzB0mSOPbYY7nmmmu48cYbCYVC/PGPf+Tyyy8HSsqUhx56iFtuuQWv18vzzz/PrFmzRj3v3TNjjEAgEHzGSJLEBNcExrnG0Z3q3q4cFV67RtClE00PVHPkKoPI2SxskB6eYT+JqepEMmS5N/4wEa9B4qD9gU1qDoALJmfw6UVCaZlHm4wB0tWxUnNsjrbB2eHQPPSlu2mILKM5tppYLiKUHQKBQCDY66i2V1PtqKYn1YMsQ5XbxALSpo2Cz4MSi299EEkiukHN4XnzPb6sn4qERKf6CRW+T4nkZJ5tGb6UfdFuR06kUHv7hu0jSzIu3Uso10ljbOwUmZIk4bFpVLlshBM5PmoJs7IjRmLzHGSCsmltbSWfz6NpGtOmTePMM8/k29/+NmeeeSbTpk1D0zRyudxWE5h+1px66qlcc8013H777Zx99tkUCgXuuOOOfmfXL37xCyZMmMCXv/xl/vu//5uLLrqIr371qwB897vf5cADD+Tyyy/nC1/4AslkcpuruA2FCKASCASCMlFkhUmeSaTzabqT3QTtwW07rZCg2mMjnMyTyOT7Y1jzXg+a046cSFJ0OVEkha84z+a30XvoLYb5a/xRLj/uVBzvf4x9xWr0lvVkx9dhV+Hr0zL8epmN1zs15lTk2c+3Y9Qcm6PJGj4zQK6YpTvdSW82RIUeJGCrxqG6xAmOQCAQCPYKFFlhgnsCkUyEeDaOx+Yk6NTpjGSw+f0oPWHI52ErJ+/J/WaR8/vQevrY54MOjjpoHv9Ov4NW/U+ITObldoMjqnLU2IdwTEgSRYcNNdRD3u/D0od2iBiKiVvxkshFaYh8SsCsptJei6mMXAWmvO+DRKXbJJ0rsLYnSXc8Q73fQY3HRN1Nq7B81mSzWQqFAhdffDHjx4/vd3bIskxFRQWzZ89GVVVaWlooFApks1n0YX7WY8HKlSuHbVu4cOGg98477zzOO++8Ifu7XC5uu+22IdtsNhs/+9nPtm+SIyB+6wQCgWAbMBSDqd6p2FU7fenhT02Gw7YhCWkqm6e4ca+iqeSCQeR0ul/N4ZDtfMN5PgY6a/LNPGb/gMTc/YCBao6Z3gLH15SUIX9tMIjnN0lXpcwwpefGCE3WqTCD2BUn3ekOVkWW0BxvIJ6L7tD7CgQCgUCwq+DW3UxwTSCejZO38lS6TTRVJmGzUfC6y1NzyDLRY48sjffvtzhFn09A9pEkRu34pylaEg81Ggwnvija7cjJFMoIuTmgpOjwGn7sqpOOVAsNkWV0pzsoWoVtXPXQmJpCrcdkYxWWj1vD9IgqLGVhWRbjx49n4sSJKIqCYRj9Je5lWcYwDBRFYeLEiYwfP158T7eCcHIIBALBNuLUnUzxTcHCIp4tY/OyBQGngduuE01vSgCW93kpOh3IiU2JTavVIF92noUEvJV5n3/PD2BJYP90Jdr69v5+Z9VnqbYVieZk7l9jUrBtXbo6luiKQYVZiV1x0pPuYHVkKc2xBhK52Gdyf4FAIBAIdiY1zhqC9iC9qV4chkqV2yCWLZAP+JEKBShs3YkQP2h/8i4najiK76MVnOs4HYCY/X10x2pWRFQW9wyTS0OSKNpMtK5upOzWDzh0xcBvVFG0ijRFV9EYXUksF9mmNQ/HliEsizeEsCSzIoRlJAzDKFuZoes6xlYq9+ztCCeHQCAQbAcBW4Ap3ikkcgnS+fQ2XVvKwm5SKFqbspFrG3JzpDP9ag6A2fp0TrEdC8B9jjfo2q9Uosvz8iY1h67AgulpZMlicY/Ku93aBjVHT1mbnbFCVwx8RhCb4iCUbmdVZCnrYmuEs0MgEAgEezSqrFLvrkdTNOLZOEGXic1QidjsFNyu8iqtaBqxow4DwP3qm0xWxnO4cVDp3+MeBSnDP5oMssP4S4p2W0nNES7PWSFJEk7NjVevIJLtpSHyKa3xtWQLY5PTa2MIy8YqLB82l6qw5EUVFsFngHByCAQCwXZS46hhgmsCfak+8sVtO6Hw2XUCTp1IcpOao+DzUHTYkZMDy9Qebx7J/vosihT57bxOLAkcS5ajdXT295ngLHL6+JJD48FGg5BSUoVsTbq6I9AVgwojiKnY6EqtZ3VkGetia0jmt131IhAIBALB7oDH8PSHraiKRY3bJJ0vkg0GSgcOxa0/3McOO5iiaaB3hrAtX8Xn7cfjld1k5DCemn/Rl5V5rnWY035ZpmgzSmqOXPmlYhVZxWcEMBST9kQzqyPL6E2HtivB+lBsHsKyrE2EsAg+G4STQyAQCLYTWZKp99RT7aymO7mNFVckqPGY6JpMasOxjKVp5KoCyKkMmwfeSpLEeY4zqFOqWR3I8NHMUs37zXNzAJwyLsdkV4F0QeLPDTbyNts2b3bGEkMxqTArMRSTztR6VkeW0hpvJJkv40RLIBAIBILdjBpnDX6bn950L36HgdOmETZsFF0Dw1GHw7KZxA4/BADPwjcw0TnHcRoARc/bKLYmXlyv0ZUaOsF30W5HjidR+rY99MRUbFSYleSLWdbElrM2tmrMlJgbQ1iq3SKERfDZIJwcAoFAMAo0WWOyZzJew0tPqmebrrUbKjUek0Q23+/TKHg9JcnpFpshXdK42HkuTsnB/UeUnBb2T5ahdob6+ygSXDwtjSFbrI4qvBjxlKSrfeFRrXG0GIqJ36xEkw3akq2sjiyhNd5EKr/1DZ9AIBAIBLsLmqwx0T0RWZLJWilqPDaykkw6ECiFo5ahXojOn4elKhjrWjGampmhTeEQvVRG3j3uEfLk+UfTMPkYZJmiaaB1hSC37Q4ESZJw6V48mo++TIiG6DLaEy3kimMT+jpUCEtrnwhhEYw9wskhEAgEo8Su2Znqm4oma4Qz4W26NuA0cBpqfxJSS9fJVQaQk6lBmyGv4uHrznNYX6mwaLqEZA3MzQFQabM4Z1IpnvaJdQYtONA6d56aY3NMxUbArESTdNqT61gdWcL6RDNp4ewQCAQCwR6C1/Qy3jWeaCaKx6ZS4dDp0+0bcmZs3d4V3S7iB88FwPPKGwCcYT8Jt+Qkr/ZgBl9kSZ/KJ71DJyEtOuzI8QRqmbk5hkKVNXxGEFXSaUk0siaynL5M95iFmGwewrJ0fVSEsAjGHOHkEAgEgjHAY3iY6p1KrpAjmSv/oV1TZWq9NvLFIvlCybgXfN4hc3MATNTGc7bj8zx6ZOnj2/HRUtRQ94A+86vy7OfLk7ck7m71UYhtn3R1R2GqdvxmFYqksT7RxKrIEtoSzaQLqZ09NYFAIBAIRs045zgqzAr6Mj1UuU2KukbKXzHkAcZQRI85AkuSsK1oQGvrwCabnO34PABaxevIZgsPNxnkhhJAyDJFw0Dr6touNcfm2FQ7FUaQdCHJmuhymmOrxyzkdFMIi7lXh7AURrn3KRTEQdFQqDt7AgKBQLCnUGmvJJ1Pszq8GlVW0ZXySoH57Dp+h0F3PEPAaWAZOvmgH725laLdDtLA2NtDjQPoqO/ig6lvc1CDhfbSi+S//OX+dkmCr0zN8JPFCq1JhScifs7uCpH3eUHbdT72baodm2onlU+yPrGW7nQnAbOaCrOUtFQgEAgEgt0RTdGo99SztHspupon6NIJpe3YTBM5laZoH9nG5QMVJPefjeOjpXheeYPui85htj6dufpsFmeX4aj7B92NV/DCeo3Txg9WahadDtTePtRIhHzAP6q1yJKMW/eRK2YJpduJ5sJU2erwm1Wo8uj3FBtDWNK5Amt7knQnskz026l2m6jK3nAer9DW/ggrVly7zVfOnHkzVZVn7IA57f7sDb85AoFA8JkgSRLjXOMY5xpHT6qn7ESkkgzVHhNNkUnlSklI8xU+inazdOozBKfZT2TR0eMA8C9eSSbUOqDdo1t8ZWqptO3zIQdrQvlRSVd3JLZ+ZYfC+ngTq8JLaU+0kClsW2legUAgEAh2FSrMCsa5xhHOhPE7dRS7jYTXU1YCUoDIsUcCYP94GWpPLwBfsJ+CQ7KD3oXuf4V/tep0p4dIQirLWLqO1hmC/NgoIzRZx29WIUsyzbHVNEaXE8n2jX0IiwVL10f5pDWyV4SwKIpOddUZ6HoQy8qX/dL1INVVp6OUeaC2LWSzWU4//XTefffdQW2xWIyjjjqKxx57rP+9GTNmDPl6/PHHAejp6eGKK67g4IMP5qSTThpw7Y5CODkEAoFgDFFkhcmeyQRtQUKJUNnG2WmqVLlN4ulSEtKSmiNQClkZYgxFkjl2xoUsm6yhWBB54SHyVmFAn7n+AodV5rCQuLsjSKF9+xKRfVbYVAcVZiWyJNGSaGRVeAkdiVayhczOnppAIBAIBNvMOOc4fIaPLFEqXQZhu5OiriGlt+7Ez9XVkJoxFcmycL/2FgAO2c4X7acCYAReoaC18+jaoZOQFpwO5Fh8zA847KqTCrOSeC7KmsgyWuJrxizcdPMQlr5Elo9a944QFsuSmDTpO9t0zaRJV2BZQ1fZGQ2ZTIYrr7yS1atXD9l+++2309XVNeC9N954Y8Drkksuoa6ujhNOOAHLsviv//ovOjo6uO+++/jhD3/Iz3/+c1544YUxn/vmCCeHQCAQjDG6ojPFOwWn7qQ33Vv2dZVuA5epEkuXjHm+wkvRZiKnht482GUb0ilnAjD3kxgL1z8xyKly/qQMFUaR7pzKw00GamTXVHNsRJIk7KoTv1GJJEmsS6xhZXgJncn1wtkhEAgEgt0KXdGp99SDBS67he5xEXO5UeLl5bWIHDcfAOd7i5FjcQDm6PuwrzYDpCJm7SMs7pH4tG+IJKQb1BxqV8+YqTn6h5ZkvIYfu+oqlYgPLyOU6qBQHJv7bAxhcRsbqrCsC+/RVVgURaem+iwMo6as/oZRQ031F8ZcxdHQ0MB5553HunXrhmx///33eeeddwgGgwPeDwaD/a90Os1f//pXbrrpJlwuF0uXLmXx4sX88pe/ZNasWRx33HFccskl3H333WM69y0RTg6BQCDYATh1J1O8U5CQiGXLqzOvqzI1Xhu5QoF80cIyjJKaIzG0mgPAMXk/uqdUoxah/t9LeDvzwYB2m1oqKyth8UbExbKVkTHf7OwINnd2gEVzvIFVEeHsEAgEAsHuhd/0U+esI1WIUunSibpcFBUFKbv1sqyZyfVkJtQh5Qu43yiFDkiSxBcdp2KTTBSzDd3/bx5qMsgP8fxfcDlRYjHUcHSslwWArhhUbLDTTbGVNMZWEs2Gx2z8vSmEZVvUHDtKxbFo0SLmzZvHQw89NKgtm81y/fXXc8MNN6DrwztXfvvb33L44YdzxBFHANDS0kJFRQXjx4/v7zNjxgyWLl1KLpcjl8tx3XXXMW/ePObOncu3vvUtOjs7R70W4eQQCASCHYTf5meKdwrJXJJ0vrz8EhV2Hb/TIJIqbX7yFT6K5vBqDoD8yZ8D4PiPLd7o+BcNubUD2qd7ipxYW0pM9te1DlKdYQDsmkGV08u0mvFUOb3YtaElrzsTSZJwaC78RiWWVXJ2rI4sJZRqJ1fc+gZRIBAIBIKdiSRJjHePx2t4UbUU9goPUYcLZYMyYysX96s5XG8t6g9zccsuzrSfDIARfIlQoZuFbdrg62UZS9NKVdgKhcHtY8BGO+3T/cSyYdZEP6U13jhmBxKbh7D0bghhWdUZ3+1CWCzLolBIDvuCQllqjo0qDiiMON72OIIuvPBCfvjDH2KzDU6Me+eddzJr1izmz58/7PVtbW08/fTT/Od//mf/e4FAgFgsRmqzfWxHRwf5fJ5YLMb999/Pe++9xz333MMjjzxCIpHg5ptv3ua5b8muk2ZfIBAI9kBqHDWkcimaIk0EHcGtZiLfmIQ0ksqRzhUwTaNUaaWlrVRpZQgyk+tJTZ6IrXEtp79T4K+nPMoV7gX4FV9/nzPrsywLK3SmVZpiFXylZhoVDhcNnTEKDh8OWWf/ehe9yThtsRCdsT52pXOSjZsou+okmY+zNrYSe8pNpa0Wr1GBJo994i2BQCAQCMYCQzGY6JnIktASfG6Ndo8HdywKuRxoQzgnNiM1awa5ygBaVzeudz4guiEh6UH6fnycXcaK3BrMmkd4puWbHBLM4zMGWu+C04HaF95hao6NKLKK1/CTKaRpT7QQyYapto/DZ/iRpSHCabZ5fIkqt0kqW6CpO0EontltqrBYlsUHH55HJPLhiP1mTL+RifXfZOWqG4ftM7H+W7S1PTxiHwCP5yAOOvAhJGn0io+GhgYefPBBnnzyyRH7PfLII+y7777sv//+/e/tv//+VFZW8tOf/pTrrruOUCjEvffeC0Aul6O1tRXDMKirq8Pr9fLzn/+ccDg86jnv2r8RAoFAsJsjSRITPBOocdbQnewuq+JKKQmpQSydAwvy/gqKpjFspRWA6ElHA3DiRxZGNMmf4w+TtjadomgyfHt/mae+fSRnHT6LO15p5ZCbXuYLv3ubr97zAV/43dscctPL3LGwhYBZw+ETZmOqI2+8dgb9J0ZGJQUrT1N0BavCSwmlOsgXB5fREwgEAoFgV8Bv+qlz1YEUx1nlI2w6ysvNIcv9lVZc/3675BihZA+/ZP88BjqKfR1Fz9s8tnYIh7+ilNQcXd1IO0jNsTmGYlJhVpK3cjTGVtAUXUk8N3YOFps+MIRlyfrdJYRl686Gtc1/oHoENYdh1FBd/QXWNv9hrCc3LJZlcd1113HFFVcQCARG7Pv8889z5plnDnjPMAx+/etf884773DQQQdx0UUXccEFFwDgdDo5//zzCYVCzJ8/nwULFvDaa68xZcqUUc9bKDkEAoFgB6PJGpO9k8kUMvSkegjag1u9ptJtEk7miKXzuGwb1Bzr1lO0D5YQAqSnTCI9cTzm2hbOeVflTyeGeDD+BF9znossSRimjdMPP46/Lmrj9hdWDTlGMlvggUUtPLCohR+cOp2L5s3inZZPSed3PeeBLMk4NfcGZUeMpugKQpqHSnsNXj2wVcWMQCAQCASfJZIkMcE1gXA6TK6QoC9QQWFdrBRGooysdEjM3Q/v86+gRqI4P/yE+LyDAPAqHk63n8ijyWcxKp/n/cZ9OCpiY7pn4IFKwelA6e1Dt302qkdJknBpHvLFPH2ZHmK5KJW2GgJmNboy+tDYjSEsTkOlO56hN5llnNfO+Aobdn3Xs/+SJHHQgQ9RLG69Co2FxaSJ32HFyh8Oaps08QqQZA4/bOuVSWTZNiYqjra2NhYvXszKlSu59dZbAUilUvzoRz/i2Wef5a677gKgvb2dhoYGTjjhhEFjzJkzh4ULFxIKhfD5fLz55pv4fD4cDgfTpk1j4cKFvPrqq7z66qv86le/4umnn+b+++8f1fyFkkMgEAg+A2yqjSneKeiyTjgd3mp/XZWp9ppk8nnyRWtDbg4DabjcHJJE5MRjADh+cR5/XGZZbhUvpF5DkiT2O/ho/vbe8A6OLbntX6v4+7utHFg7vYyzh51HydnhocKsJGdlaYquZHVkCT3pTvJjlOVdIBAIBIKxwFRNJnomYtfBVukkYtjKy82hqkSPORwA96tvQnGTE2OeMZep6kQkOYdZ8ygPNGoUthQ1KAqWqmLr6kYNjX21lWGnLatUmEF0Wac10cSa6Kf0ZcpTtZbDxhAWl67RFIrv0lVYJElCUexbfamKg5qawWoOw6ihpuYLqIqjrHHGwsEBUFVVxQsvvMDjjz/e/6qsrOSKK67gZz/7WX+/jz/+mJqaGmprawdcHw6H+fKXv0xfXx/BYBBVVXn11Vc59NBDAXj88cd55ZVX+NznPsett97KXXfdxQcffEBPT8+o5i2cHIL/v737Do/rvA78/7117r3TCzo7wS5KpERSXVRvtuKy3sSWy3ptR/YmXu8vcRw7Sp5EXidxIsWJs3a8iddO4ha5xLLcJatSnaQoUmJvIEH0juntzszvjyEhUuwkiAGB83meeUgOLu68LwDi3Dn3vOcVQkyQoCdIa7gVt+ySKWZOe3zE8RD1WSSyRSq2hVsXRUud/PNyC+eTn9WC5pb4g82zAXgq9wJtVjfxgsKDj59ZguOIv31sN4lshQZ/+PQH15iqqPiNIGFPHYVSnv2JXeyLb2co1z9uW9oJIYQQ56vOrqPZ14xh5SnVRXFzhWOSFieTWnM5JcfGGBzG2bpz7HlFUXiP920YGOjeNgbNTazrOX65aSngRy2VsdoOYu/ehz44cckOS3eIeOrJl/Lsj+/kUHIfGfcMkjtnyDY1mkM2lXJlbAnLcPribU5+op1WLtSOKqej6zqzZ88+5qHrOtFolIaGhrHj9u7de8JlJqFQiEwmw0MPPURHRwc/+tGP+PGPf8zHPvYxAJLJJH/1V3/Fyy+/TEdHBz//+c9pbGwkHD6/a09JcgghxASqd+qZG5xLIp+gUDp1AFYPNyFVVcgVS7jRMGWPiZI9yU4tisLo4WqO1vUHuaNULWf9Zs93+dJzz57TeL/5/EGafadfXjNZqIqK3wwR8dSRK2VpS+xib3wHw7kBSXYIIYSoOUVRmOmfSYMviF7vIWF60JKn781R8XhIXlu9+x145oVjtpaPamHucm4CwFP/K37WnSFReMsbYlWh6HUoRsIohSKefQew9rShDw5fsJ1Xjn15lYAZwm+GGMz1si++nd5057j101IUhZBj0uD3MJQqsLljhD29yYtuFxYATTOP2WnlyI4qmjZ5m6wPDg4SDAZP+LF/+Id/oKOjg3vuuYdvfetb/OM//iOXXnopAO9///t55zvfyWc+8xnuvvtuduzYwf/9v/8X7TRLuE5n8i1aEkKIKa7F10LWzdKR7KDeqUdTT/6L3G/rNPgtOkcyWD4bNxrB7O7Bta0THp9bvID8jCY8nT38l406HWsXsiO/h+fif4ei/T6Vkv+sxvroli7+9O2LcQwPmeL4bAc3EY5cTJUqJdLFBPuTOwnoIeqdZoJmeFw6vQshhBDnwjEcZgdnM5xLMNoYpXCwC83vrd7dOIXktWsIPPsSnq4erL1t5Ba+eef8Ws8qXs/voJ1OlPqf8Ej7B/jwghPcTFFVSgE/lL1oyRSe/QfQA37c+jrcUOC0/UHOl6EaRKx6Mm6KjvQ+RgvDNDkzCJjhcVlioWvq2C4sbQMp+lN55sa8xJyL623vkWqOXbvur0kVx+7du0/6saeffvq45z7/+c+f9Ph58+bxne9854QfU1WVz3zmM3zmM585+0GeglRyCCHEBNNUjbnBudQ5dQxkBk7bEbw+YOF4dJJ5l1IsQtn0oOROXs1xpDdH4KWNfDJyL032TBRjFHvGd0E5uzsamUKJ/f1JfJ4TJ1UmO03RCJhhQmaUbCnNvsQO9sWPrAm+8HeuhBBCiBOpd+qZE5yBWq+RNk2U9OmbUpa9XlJXXg4cruY4iqqo/Lbv7Who6L49vJrfSlui+lbPdrzU1Tczd/5C6uqbsZ1qQqUUDOCGQ6jZHJ59bVh79qMNj8AE9LRwdB9hTzXZsS+xg0Op/eTc0y/lPVNHL2HZ2hlna1eCZGHy9eo4mSPVHMHA5ZO+imMykiSHEELUgKmZtIZa8Zt+hnKnbq7kMVSaQzZ5t0TRsnBjkVM2KssuXUShqQE1XyD09Ct8YtH/plKy0Jx2PI2PAme3zVo861IoTub2o6c3luwwIqTdpCQ7hBBC1JSqqMwOzKY5FqNY76WQSB+zBOVkEjdcTUVVsfcdwOzoOuZj9VqMO+zqjQ6r4Rfs14MsX72W1dfdjtm0DGPm5ZhNy1h93e0sX72W+sYWFF1/M9mRyWLtbcOztw1tePSCJztURSXkieDV/fRlu9kT385AtmfclpcevYRlMJWjIzH5dos7lUpFYcWKf69JL46L3cVVtyOEEFOI1/DSGm5lx9AOEoUEATNw0mMjjsmI1ySeLWJEw5QHh1ByeSrWCbZiUxRGb1tL/bd/iPb4k8z/4O+R7boX76xv4YS3oBZaKI5cc9rxlSsVyhUwdY3/+2ycrV3DzG8wmF9vML/BIOZXx61790TRVJ2gGaFUdkkWEyQKoxQLNoHyxTUPIYQQFz/HcFgQmU9/yyDpnlFC6Sz4nFN+TikcIr1yOb5NrxN45gUGP/Q7x3z8Busqtrp76VF6iAd+xj+91MAv3nidTOHNhL5jatxzWRMfuWY5s1ovYeurz5HPZSmFglAqoSVT6HvjuMEgbn2MUjAA2oW7N25qHmJaPelikgPJPYzkB2l0ZuA3QuO2hMUx9TPp7zqpaJpJqVSWKo5zIEkOIYSooYgVYX5wPruGd2GqJpZ+4mUhmqbQGLSJ54pkDQs9Gsbo7cc9UZIDyC5bTKGxHrO3n7onf47tLuHxdz9Nkz9yxmPriSe57e9fZEljgLaBFEOpMkOpPBv2V3tzBGyF+fUG8xqqSY+mkIZ6kSQ9NFUn5Ingll3aUp0orlxACCGEmHj1Tj0LmuezpaGfXGcS6zRJDoDEjdfi2/Q6zrad6P2DuPWxsY85tpcf3fkjvKZ37Lm/fvdlpzzf1TfdwcvPPE4+lwVNe0uyI4EbDuDWHU52nKZvyPnwGn4s3SFRGCWV2EG91USd3YxHuziXzI4HbRrP/XxIkkMIIWqs0dtI1s3SFm+jzqlDV0/8qzlg6zT4LLpGM9jRKPrQyMmrOVSV+C03UPe9/yT+ne/wnk9/hSZ/hNXfXY17BmWguqqz8QMbeeeKFuK5FL93u82BAYP9fUX29xU5NOSSyFbY3F5gc3u1sZltKsyr18cqPWZGdTR1cic9dFVHUyQUCiGEqA1VUZkXmkP3nC6Ge7djprOoXvuUn1NsrCezdBHOjt0E1r3I8H99B1BdnrF81Q14Te9Zx/vlV1zPppeeeLNP2JFkh+uiJVLoownc0OHKjoD/giU7NEUj7ImSL+Xozhw63Jh0JmFPTJqGizMmV3ZCCFFjiqIwKzCLrJulN91LvbceVTnxxUN90MNwtkCiwmmrOTKXLqX4RAyjf5B7u9YDV+GWXdzKGax1PVzS+d+vmUVf116ccpGlLR6WtlQrHgpuhUODLvv7q0mPAwNFsoUK2zuLbO+srnk1NJhTZzC/Xmd+g8GcOgNTn9xJDyGEEGKi+Uwfy+dcwnMHD5HtGMbrbTnt58Rvug5nx258m14nfvtNlIIB6hqaiRcUYnDW8T5eVKlraKa/99g+H+g6pXDocLIjiT4axw2HqpUdAd8FS3Z4NAtTbSDtJmhL7CbiGaLBmYHPOPnS3smkfLGtjblInOnXVZIcQggxCeiqzvzQfPKlPIOZQeq99Sc8zjI0moMW+/vTFKIR9MFhlHyeiufk1Ryxhx+h/MP/oPSJj531uIKay8ENG7A8JqVICDccouzzYuoqrY0GrY0GAKVyhc5hl7Z+l/19Rdr6i6TzFfb2FtnbWwSyqArMiupjy1vm1ek4Hul/LYQQQjR6G5m7YCn7up7DTGcxTlPNUZgzk9y82Vht7fife5nRe+6gYWYrX3upnb9616Vn/fr/9tIh/sdVrccnOY44OtkxGkcbiVMKH1XZcQGWqyqKgs8IYmkuo/lhEsU49XYzdVYjpnbiGzy1ZpomqqrS3d1NXV0dpmledP3LJqNKpUKhUGBgYABVVTHNUy8zliSHEEJMEpZu0RpuZfvgdkZyI4St8AmPi3o9DHsLjGQVzGgEo28A90RJDiB92TKCTzyLMTjM6PcfhrNsPbFty0sUYxGUXB6jtx+9b5CS30cpFqEU8FPxVE+oqQqzYwazYwY3LbUpVyr0xUuHl7dUKz7imTIHB10ODro8vT2LAjSFtbHlLfPqDYLOxCY9HMPD3HAjgYAxoa8rhBBCHE1TNZbNu5TevXtJHeon7J192s+J33RdNcmxfhOFt99JOBzh56+/fk5Jjp+93s39dy/CdrxkM+mTH6jrlCJhKBbRjyQ7oiGKdTHKft8FSXboqk7YipErZelKHySeH6bRmUHIEz1p5WutqKrK3Llz6enpobu7u9bDmXIcx2HWrFmop6kgkiSHEEJMIgEzQGuouuNKupjGa3iPO0bTFJqCNolckkwoRGBoCKVQoHKirLamVas5fvAoQ//6b3g+UsE9i/fz+VwWFIWKbeHaVvUOTjqDvv8gZcuDGwlTCgcpe51jSlZVRaEppNMU0rluUTUDP5wqjy1vaet36U+U6B6pPp7fnQMg5leP2cEl6hv/HVwUoNEfpslfR8Txsac3QTrnsqsvxfw6H6VyBa9HwqMQQoiJ5Tf9LFl6OZs6f042ncb2Hn8NcLTcolYKTQ2YPX0EX9nE3stuPmYXlbORKZTY15fE6wucOslxhGHgHkl2DI+iDY9SioQp1sco+7wXJNlhaTam6iFdTNCW2EXEqqPBbsFr+Mf9tc6HaZrMmjUL13UplWSb+vGiaRq6rp/RdaFcxQkhxCRT59Qxz53HnpE9GKqBeYKtw4K2Qb3fpGekhBMJYwwM4UZPvHNKeuVygk+ug6Fhbtms87M15zE4Xa92V69UULM5zJ4+Kn0DlII+SpEIpYDvhMkWRVGI+jWifo0186udwhPZMm2Hkx77+4p0j5QYTJYZTOZZvy9/eJ4q8xt05h1OejSe5w4ulm5yefMCEtkKX3v6AD/d0n3ctnrvWNHMJ9bOp95vYZvS5EwIIcTEmTdnCV1zttOxvw3LaT11rkBRiN90HXX/8WOMJ55m5H3/47xeO5V3cfSzfHt4ONmhFIvoQ8Now6O4kTBuffSCJDtURcVvhnDLRYbzAySLo9RbLdTZjejq5KnKVBQFwzAwjMkzpulEkhxCCDEJtfhbyLgZOpId1Dv1aOpb3mwr0BiwGc24xANBokMjp6zmSNx8PdEf/Yy3v+Ly65UaReM8LzoUhbJjU3bsanVHMo0+EqdsW9XqjtDh6o5TXNwEbJUVsz2smF1dapMplDlwuKfH/v4iHUMu8WyZ1w4WeO1gdQcXx1QOJzyqzUxnRM58BxdLN7lq5hK+t76DBx/bc8JjMoUSD2/o4OENHXzuzsV8+No5WIYkOoQQQkwMQzNYdskaRjo6iSfjhALBUx6fuXQpxceewhgeJfDM48DMc35tn0en4J5Bs9ITqBgGbjSCUihgDA6hj4zgRsO4sQuT7NBVg4injqybpjO9n3ihuoQlaEakB4a4+JMc41ECdOQc07WcSOYv8z/6z+lmMs9/tm822UKWvlQfDU7DcUHb1BTqfQYHcia+UBBzaJhS9MR9PJKXX0rji68S6u7m1i0Vfr36zC4AHss8y7XmKhz1FA3QNJVy0A/lCmouh9HZjd7TRynor17g+P1gnD7cWAYsadFZ0qIDNgW3Qvvgm81M2wdcMoUK2zoLbOssHP4awJy6w81M63VmxfQT7uCiAJc3L+B7r3Tw4OMnTnC81d88tgsU+NDVs/FoZ/b1mow/R1PBeH1dJ/P/94kg85f5H/3ndHMxzT/aOItZsxexfe/rFLwO+ltvdBxNVYivvYbYT36F59Ef4r/u0+f0mo6pMa8+wAs7RylXzmNnEEOnFA2hFIpo/YNoQyMUo6E3kx3jzKPZGKqHZDHO3vh2op4G6u1mbN055rgju3KM53tHMXkplbHNkC8upVKJLVu21HoYQghxQeVKOQ5kD5Av5wkZoeM+7pYrdCaKuPE0M3q6KVo25RMkFBRV5Z3+RnofeIBhH/zP/6FRPMV2rrqis/lDm1n57ZVoZZXL3WWsLC3Dc4adS1XXRc/kUMslXI+HXDhI0eetbnd7jndYSmXoT6l0xbXqI6GRd489l6pUaPCXaQmWmBEs0Rwo4dFhfkMLi2cs59Z/eOGsX/fpP7yBcqKPeDx+xp+zYsUKNE0qQM6XxHohxHRVGBpgz6YX6XdUolbolMeqrsvKbz6Mmcny4m9/ko/9799n5bdXntEWskfi/Qd/8GU+uuK9fOJbG7gyMMKawCi2dv7boKrFImY6S1lTyYcC5MJBXPvUO8ecK7dSJF1KYKgewlo9QT2MplSvidKFMqoCl9SP364sEusnr4u+kmP58uXn/cNVKpXYunXruJzrYiTzl/nL/Cf3/BflFrFjaAeaohHwHL8/fHO2wJ6eJD6vgz0ax42EjjtGURSCd7yL7V96gGgSbtqq8PTlx4eAMuVj7uA0aDG6Kr28bGxmi7mTGzxXcq21Co9yhhcJ5QpqNouWzVLJ5HANEzcSpOT3wdmu+wXmHnPqCr2jJdr6Xdr6XNr6i8Sz0JPQ6ElovNpRreBoDmv80/LFfPPF9rN+PYBvvHCQP33bYubOPX0H9yM/T2J8jdf/z4vh//uFJPOX+cv8L575V1yXsKqycd9m7GgAx3ROeXzqhquIPPYM1238NZXK7531623Lf4s/W/80BfNtrBudwSuJKDc0FriluUDAPP974kq+gJZMQSZP0fbixiLVZa0XQMZNkXHTaEaJBqeJgBEininQfvDAuL53FJPXRZ/k0DRt3H5Rjee5LkYyf5m/zH9yzj/mjbGgsoBdw7vIV/LY+rF3QCJei4aQy1A6iBNPorklKm9pdKUoCqpp8strTD70hMtff+43eBqbjnutoXgvt//sbWNbsv2vwMd4o7CD32Seo788yOO5dTyf38CN1tVca63CVE5T2aEBPh8ln6+6Tnc0gTk0Qtnr4EYjuKEAlXO8o6MqMCOiMSNicsPi6g4uQ6nyWCPT/f1FBpNlVMVkXizIT7e8ek6v8+iWLv78nqWT9udjOhjv/5+T+f/7RJD5y/xl/hfB/DWNuUsuoa+zgz25JI7pnHK71NQ1awg98xLqgf2k1q1DV3U4g0IMXa2+HXR0h3jxAN45X8VIXslwz5080W3zbK/JtQ1Fbm8pEvGcR7LDsihbFkouj6dvAHN4lGIsSikWqfb3Gkc+I4Cte0kWRjmY3E3MasSsVJuzXzTff3FeLvokhxBCTAeN3kaypSwHRg9gOMbYRQlQbUIatBlNB0nHR/Elk9Vt3Y5SqUAyk+CvHtzA/jvuxNPYxK4VK6kc1WBM0XUWb9nMpg9uAqrHKyhcZi5lubGY1ws7eCL7HAPlYX6VfZrncuu50bqaq60rMJXTdw+vmCYl04RyGTWTwWzvQO8xKQWDlKKhanXHeVx4KIpCzK8R82tc2VrdwSWeKaNV/OzpS5zXtnptAymWNp+6+ZsQQggxnsy6GK1zWhlo28ZoLk7EPnHfLYCKbZO86gqC615i4OtfZ+N/bDzj18m5eT4T+T0eGfk5mwvbKQbWUxfYhj50Nz39l/Nsj8nzvQZX1rncMaNAg33uyY6K5cG1PCi5PGZ3D+XBIdxYFLcucs43PU5EUzRCniiFUp6+bCdusY9C6fyX34iLgyQ5hBDiIqAoCrP8s8i7ebpSXTR4G465o2ObGk0hm47hIE4iCcUiHFPNUeHFpx5DUSBw1eUsoFoKy1FJjiOXLL/55Y+oVCpUOzZVn1UVlZWeS7jUXMrmwjaeyD7HcHmUX2SfZF3uFW62r+FKz+UYyhmEFVWl7PNR9vlQ8nmM4WGMwSHKPqd6Vyfgp2Jb5/slAyDoqDQHPORz59ckLJWXJmNCCCEmlmKa1LW2Mreriy2FYQpmDlM7eXxMXn8VgRfWk39tMz3PPEtm6Ur+7aVD/Oz147dL/63Lmvnv18wiaJTZuul5rKLOvb53saa4gkfSjzFQHoLoj1gY3Yjb/1u0DTXzUr/By/06V8Rc7ppRpMV77kmDN5MdOczuHvTBYdxYZNyTHabmIaLW053vY7Q0Mm7nFZObJDmEEOIioas6c4Nzybk5BjIDNHgbjvl4zOdhuCFCfHSUcDJ1XDUHVBMXyTUrT/k61QTHie/SaIrKKs+lrDSXsamwlSezzzNSjvPTzG94NvsyN9vXscZzGfqZJDuAiseD6/FAqYSayeI50E7Z9FCKBCmFQ5R8PtBO3wvjVErlMj7P+YU7n0dKW4UQQkw8vS7GrBmz6OlwGc4liDnmSZetlIIBUqsuw7/+NXr+zz/A/Z/hE1e1cv/di9jXlyCZK+K3DFobAowMD9PX/gb7+nuOifmtxlz+MHgfz+Ve4cns8/RwELX+q9zQcDVDvbewfdjh1UGDVwcNLo243DWjwFz/+SQ7LFzLQsnmMLt70YeGceuiuNHIuN3wUBQFXTWpcFHutyHOgSQ5hBDiImLpFvPD89kxuIPh3DARKzL2MV1XaArZtEUi+JOJapWGrgPKsRuaWKe+aFBUFcpvXrAcXdFxhKZorPGs4HJzORvzW3gq9wLxcpKfZH7NM7kXudW6jlWey9CUM0wOaBplv4+y34eSy2H0DWL0D1Ly+3CjEUpBPxXPuXVET+azLJ/txzG1c1qy4pga8+p85/TaQgghxPlQPR4Cc2ayoL+f9a5LupDA7wmd9PjE2mvxbXgNe+ceuje/Rn9vF7bjxfH6KKTS5H1eNu5Nkc2kT3oOXdG42b6WFeYyfpp5nB3FvWyuvEioaSvvbbmLPd2XsHlI543h6mNJqJrsWBAon+sGalRsC9e2ULJZzI7uamXHkWSHNX47oojpQZIcQghxkQmYAeaH5rNjaAepQgqf+eYb8LBjEmoMM9o/SDSRpBSJcOONd2L5j92VpTAwcEwiA4BymcLAALff/Z5jns4lEzz77GO8NdEB1Quhq60rWO25jPX5LTydfZHRcoL/zPyKp3Mvcat9HZebl6KdolnaWx25q0OphJbO4Glrp2x5cCMhSqEgZZ8X1DM/X6aYZziT4h0rmnl4Q8cZf94R71zRQrksd3+EEELUhlFXR31djJkD0OH24tHzmNqJ3/i7dVEyy5fifWMHgWdfZOh97yabSZNOJ+nt6aWxqfGUDUyPFtFC/Hf/77C9sIefZh5npBznl+UfsLTlNf6/GXfwck8DG/p1do5WH/P9Je6cUeCScOk8kh02rm2jZrKYHV3oA0PVZEcscs43O8T0I0kOIYS4CNU5dcxz57FnZA+GZuA5crGjQGPYYX9jjOL+g2glF8sfOK7JKOXyCZMc+9feeEwC4UgzUkU5UtFxYrqic621ijWey3glv5mnsy8yXB7lh+lf8HT2RW61r2eleckZX1gBoGmUAn6oVKprdnv7qfQNUPL5KNVFKPn9VDyn2d3lsJ7kAB+7fu45JTk+vnYeznkudxFCCCHOleo4OLNmMHc0yWAlQqo4REg1ThpTEzddh/eNHXi3bGX0zpspR8IoKCiqiqIoKIpywirNk1lmLmSBMYensi+wLvcKO4p72csBbplxHXfOuJqnux1e6tPZn9T4p502M70l7ppRYEW0hHqOyY6yY1O2LdTs4WTH4BBufR1uJCTJDnFactUmhBAXqRZ/C9lSlkOJQ9Q79WhqdWmI16NTNyPGYO8A0US1HPWtTUZP6i3Jj7OtXzAUg+utNVzpWcnLuU08k3uJwfII30//jKeyL3K7fQOXmkvOLtmhKGN3dnBdtHQGfd8ByraFGw5TCh+u7jjFbaPe5Ahzw8388Z0LefCxPWf80p+7azH1frmYEkIIUVt6fT3hUAez4zr7chkybhKfceJdvwozmskumIe9/yBr7/4vmLHYccecqkrzREzF5C7nZi73XMpP0r9mv9vOY9ln2aRu5V2z7uRtM+fxRJfB870GHWmNr++2abTL3DmjwOo6F+1ckh2KQtlxKNt2NdnR3oHeP3A42RE+4xsdYvqRJIcQQlykVEVlbuBwI9LsAA1OA8rhN/qxgE28uZ7cnraajM1UDNbaV3GVdTkv5jayLvcKA+Uhvpf+CU/mXuB2+wYuMRajnm09q65TCgagUkHN5jB7eqvVHUEfpWiUUsBHxTh+O9sK8Fr3Ht5/5VIUFP72sd2nfanP3bWYD18zB8uQpqNCCCFqS/P58DQ10pRqY9CsJ1HqpFgqYGgnfqOfuPk67AOHMGOxk24Zf7oqzRNp0GJ83P8BthS287PMEwyUh/h68nusMJdxz+xbuXOGn6e7TZ7tMejNqvz7XotfHCpz+4wCV9e7GOfSS/zoZEcmi3nwEPrAIG5dDDcapmJKskMcS5IcQghxETM0g9ZQK/lSnsHsIHVOXfV5XaV+Vj29vf01HZ9HMbnZvpZrrFW8kNvAc7n19JUG+E7qxzRp9dxur2WZsXAsOXPGFKVayurYUCyiJdPow6OUHQc3GqYUClB2nGOqO3JukVc6dvCeVQu5fVkD33z+II9u6TpuW713rmjh42vnUe/3SIJDCCHEpGE0NBDs7mFGDvamQmTcYQJq5IQxNDd/LvkZTcDJt4w/V4qisNJzCYuNVh7PPstL+U1sKWxnV3Efd9hredusVdzWUmBdr8FT3QaDeZX/2G/xy44ytzUXub6xyDltWqYolL0OZcdGzWQwD3agDwxRrI9RioZPeJNDTE+S5BBCiIucYzi0hlrZMbSDRD5BwFNtMhr2WSRmVi9wFF0/9qLmRD05oNqP4y09OQCcLdtIL1t0eLeWs2cpHm61r+daz2qez63n+fwGekr9fCv1I1q0Rm6317LEaD37ZAeAYVAKBaFcrlZ3dHRR6e2jFAhUEx5+PxEYDWQAADVySURBVBjVcefcIi8f2k6DP8z/uGkGf/r2xeztS5DKuUS8FvPqfJTLFenBIYQQYtJRg0HM+jrq2rsYtOoYLWTJuCm8hv/4gxWF5NprL+h4bNXind47WeW5jEfSv6aj1M1PM79hY/513u29iztnzODmpiIv9Bk80WUwUlD5z4MeHus0ubm5wI1NRZxzCbeKQtnrpew4qOkMnoMdlAeGKDbEKIVDkuwQkuQQQoipIGyFmR+az66hXWS1LLZuo6gQm1FHNhFn8ZbNxxxfGBioNhk9OtGhqsxf9yxmXd0xxxZ7eoj9x48J2xapNStJXXkFbjTCubBVi9udtVxnrWFd7hVeyG2gq9TLv6V+wEytmTvstSw05p1bskNVq3d4vA5KoYAWT6APj1C2bdy6KKVggLJjU6Hao6M3OYJjeEjl0wRKBovmXYGmSeWGEEKIyUlRFPSmJnx9fTSVTFKFCLlKz1HLVo7dMj67fMmpz3cGW8afiRl6E58MfJj1+c38OvsM3aU+/inx76zxrORu+2ZubobrG4us79d5vMtkIKfys0MeftNlcmNTkVuaC/jPJS+hKJR93rHKDk/bIcq+QYr1dbjh0NgNDjH9yHdeCCGmiAangaybpW20Dd3WMTQDn9fkhZ0bSW7eidMYQ9E1FFWtbhP7losbVBWzro7f/Oo/qRx+XhuN493wGj6fFz2RJPjMiwSfeZHswvkkr15FdslCOIfEgKPa3OXcxA3WlTybe5kXc6/SUermG6mHma3P4A57La36nHNLdgAV06RkmtXqjkwW82AHFY9JKRiobkXr94GukynmOTDSiz+jcuMlV5zTawkhhBATRQuF0GIxYn0DDFlhRgo50u4gQTXGTTedYMv4vr5x2TL+dFRF5WrrCpabi/lF5ik2Fd5gfX4z2wq7eZtzM1eYl3Fdo8vVDS6bBnUe6zTozmg81mnydLfBdQ1FbmspEvacw2IaVaXs871Z2dF2EMPvpVhfjxsKSrJjGpLvuBBCTBGKojDTP5Ocm6Mr1UWDtwFVUYnNrCPb3k1+aBRPfeTEy1SOUimXqRzuROYGA8Rvu5H4zddj79yD/+VXsffsH3u4QT+pNZeTWnN5dcnIWfKqDm9zbhlLdryU20S728nXk99jnj6L2+21zDdmn9PXAzh84eOl7PNWqzuGR9AHhyj7HNxIBDcUOP05hBBCiElCUVXMpiZK/f00eA3SxTBlPUuulJqQLeNPx6d6ea/vt1hTvIxHMo/RVxrgh+lfsCG/hXc5d9GsN7CmzmVVzOWNYY1fd5q0pzSe7jF5rtfg6nqX22cUqLPOMdnh91H2OqipdDXZ4fNSbKhD0U597SOmFklyCCHEFKKrOvNC88iX8gxkBmjwNmB6dCKtM+hfv41S0UU3z6EmVNPIXrKE7CVL0AeH8W3YhG/DZvR4ktAT6wg++RzZpQtJXr2a3IJ5x1w4nQm/6uMe5zbWWlfxTPYlXs6/Rpt7iH9OfodWfQ6322uZa8w8+3EfpWKalCImlEpvbkXX48Gv5NCcc1t+I4QQQkw0LRJBi0SIjiYYtrzEc1Hi5R5g4raMP515xmz+IPAxns9t4Inscxx0O/nHxDe4zlrDbfYNWIqHFdESl0Wy7BytJjv2JjSe7zN4sU9ndZ3LHTMKNDvnmOwI+CmXy9Vkx74D+PUKo8p4z1JMVpLkEEKIKcajeZgfmk9+MM9wbpiIFSHUHCNVHyEzNIreVO258dZmpMoZNhV1YxFG776N0dtvwtm2E//Lr2K1teNs342zfTfFSIjUVatIrV5B2ec7q7EHVD/v8N7BWvtqns6+yIb8Zva5B9mXPMhCYx532GuZpbec1TmPo2nVslafDyWXx+nsohyRJmVCCCEuDoqmYbS04A4N0+D3ksr7CJjhWg/rOJqicaN9NSvMpfw08wTbirt4Lree1/M7+C3v7Sw3FqMoCkvDJZaGs+yNqzzWabJ9VGf9gMGGAZ0V0RJ3zSgwy3cOlRhjyQ4vencn3mxm/CcpJiVJcgghxBTkN/3MD89nx9AOUoUUPtNHpLWF/CvD5HNFcsnEcc1Ioboe94zLVHWdzIrlZFYsx+jrx/fKJnyvbsEYHiX8qycJPf40meVLSV61ivy82cds53o6ITXAu713cZN1NU/lXmRj/nX2FNvYU2xjidHK7fZaZuhNZ3y+k6lYHsq6NBsVQghxcdEjEbRQkFA2R8jxkMiNT0Vi8Ml1pBcvoNjceFZx+1RCWpD/5n8POwv7eDTzGMPlUb6T+jELjXm8y7mTmFYd+4JgmQXBHO2parJj85A+9lgWcrlrZoHWwNknO2yfH2f+QgKF4rjMR0x+kuQQQogpKmbHmBuYy97RvRiagbcxSqAhwlD/KM8+8xiKCuVKmd7ePhobq/07zrWzerGhnpF33MXoXbfgvL4d/8uv4unowrtlG94t2yjWx0hetYr0FZdRduwzPm9YC/Ee79u4ybqGp7IvsKnwBjuL+9hZ3McyYyG32TfQojee9XiFEEKIi5liGJjNzZR27KDRFyaZqy5ROd8t44NPPkfwsadxQ0EyyxaRXbqI3LzZ57yF/NGWmK20Gh/n6exLPJN7iT3FNr4U/xdusq7hJvtaDKX6GrN9ZT6+OEd3RuWxToONAzrbR6uPBYESd80ssCRYOmUORlEU6hqaaZjZSjgcYU9PHCVXZFdfivl1PkrlCl7ZLn7Kku+sEEJMYS3+FnKlHO2JduqcOkKtM8kNjJLJ5nEck0qlMtZotDIOK3Irpkl69UrSq1didnbje2UT3s1vYPQPEvnZY4R+9SSZFZeQvHoVhZktZ3yXKKqF+W3fPdxUupYns8+xubCd7cU9bC/uYbmxmNvtG2jU6897/EIIIcTFQqurQ/P7Cbh5Io5JPpk6ry3j88PDZJYswNq1F300TuDFDQRe3EDZY5JdvIDs0kVkF7dSdpxzHrOhGNzhrOVyz3J+kv41e90DPJF7ntcK23incyeLzfljxzY7ZT6yMM89Mws83mXycr/O3oTG3u02s33VZSyXRkqob7mU8Fg2y1fdQLyg8NUX2/npli1kCqWxjzumxjtWNPOJtfOp91vYplR0TjWS5BBCiClMVVTmBOeQL+Xpy/TREIsRbIqQ7h6hZEXHqxL1hAozmhl+TzMjb78N72tb8b+8EbO3H9+rW/C9uoV8SyOpq1aRXrmcisdzRues0yK8z/dObi5dx5PZ53i9sIOtxV1sK+7iUnMpt9k30KDFLtykhBBCiElCNU305mbyu3ZTH46xft1rGHqJvtxBABzTf8ZbxsPhXVU+9DsoxSLW3jbsHbuxd+xBT6bwvr4d7+vbqagK+bmzySytVnm4sXNbJlOnRfhd/728UdzJz9JPMFQe4Zuph7nUWMI93tsIqW/uflZnV/hAa563zSzwRJfB830G7SmNf95l0+yUuGtGkStiLqpSTXBccfUtfHdjNw8+vueEr50plHh4QwcPb+jgc3cu5sPXzsEyJNExlUiSQwghpjhDNZgXnEfOzTFQHCY2dwbB/lFGsgV8zoVvuFmxLFLXrCZ19SrM9k78L2/E+8Z2PF29eH78C8K/+A3pyy8ledWq6hrgM9CgxXi/793c4l7HE9nneaO4k9cLO3ijsIMV5iXcZt9AnSY7pgghhJjajLo6ih0d+NwcdT4PPYkcUaue7vQhTPfUNxCO3jL+mOcNo1q1sXQRlMuYnd04O3Zjb9+N2duPtf8g1v6D8PPHKTTUkV26iMzSRRRmtZzV7mqKonCZuZRFxnx+k3mOF/MbeKO4k12j+7jdXst11mo05c3kQ9hT4bfnFbhzRpGnewye7THozmh8c4/Gzw6VuXtmkf/5rhtOmeB4q795bBco8N+uno1tylvjqUK+k0IIMQ04hkNrqJXtQ9tJ+ksEmyKkekcomoHTf/J4URQKc2YyNGcmI791J95Xt+B/5VWMwWH8L7+K/+VXyc2eQeqqVWQuW0bFOH0CplGv54P+/0K328dvss+xvbibzYVtvF7YzuXmcm61ryeqHd1xXjmuekVRVVDObstbIYQQYjJQbRujqZn8/n3UR+sZThfQCBA0IySL8XF4AZXCrBkUZs1g9M5b0IdHqhUe23djtbVj9g1g9g0QfOYFSj4vmaULq308FsyjYppn9BKW4uG3vLexynMpj2R+TbvbyS+yT/Jq4Q3e7dzJXGPWMccHzArvnF3g9pYCz/YYPNVtMpBT6TVnMZBXzzjBccTf/HoXd13SyOyovDWeKuQ7KYQQ00TICjE/NJ+dQzsxW0JE+kfoyhU58+1Uxk/Z65Bcew3JG67G2n8A38uv4mzbhdXeidXeSennj5NetYLkVVfg1p1++Umz3sCH/f+VTreH32TXsbO4j1cLb/BaYRurPJdyq3UdYS3Mtbfcid8588ROoVTA1M7sIk0IIYSoBb2+nkJXJ5ZboD5gcWgoQ8SpJ1tKA+e+ZfyJuJEwyeuuInndVaiZLNbufdUqj1170VJp/Bs249+wmbKuk1s4r1rlsWQh5YD/tOdu1hv4Pf9/49XC6/wy8xS9pX6+lvw2q83LuNu5GZ/qPeZ4R4e7Zxa5ubnIC70G7756Nt9++eA5zetf1rXxZ29bgiPNSKcE+S4KIcQ00uA0kHWz7C/uIVgfwNubZLQ08UmOMYpCrnUeudZ5qIkkvo2b8a/fhD4SJ/DcywSee5ls69xqdceyRaft7j5Db+Ij/vdyyO3i8ew69hTb2JDfwqb8G1xlXcGdzm+z+rurccvuaYemqzobP7BxvGYqhBBCXBCaz4vR2EixvZ36WD1D6QKlEkQ9DWQTo+e/ZfxJlB2bzMrlZFYuB9fFOnAIe8dunO270UdGcXbswdmxhyiQn9VS7eOxbBHFhvqTNh5XFYU1nhUsMxbyq+zTbMhvYWPhdbYVd3O3fTNrPCtR3/K5lgb3LDC5bGaQj3170znN5dEtXfz5PUvP6XPF5CNJDiGEmEYURWGWfxb5Up6eWJzoYIX2UoVyuYyq1XbJRjngJ3HLDSRuug5r9z78L7+KvWsP9r4D2PsOUPJ5Sa25nOSVl1OKhE95rll6C7/rv5cDxQ5+k13HPvcg6/PVizy37OJWTp/k4AQ77gkhhBCTkdHQQLG7G90t0hS02D+QIuyEePbZx0gV4/jM4LhsGX9Suk5uwTxyC+Yx8lt3YvT2jyU8PB1deA5VH+HHnqYYCVV7fixbRG7ubNCOb/rpVR3+q/ftrDZX8Ejm1/SU+vhx5ldsyG/hv3jvPm77eJ8vwL7exDG7qJyNTKFE20CKpc3Bc/p8MblIkkMIIaYZTdWYG5xLrjnFSOcggf4s8ayLbYJl6MdtxTbhVJXckoXklixEGxnFt/41fBteQ0+mCD79PIFnnie7aAGpq1eRXbzglE3O5hoz+bjxAfYX23kq98KxL6OoqBz/uWXKlCuS4RBCCHHx0AIBjPp6Ct3dROrqGUwZpHMlolY92VKKrJsZ1y3jT0lRKDY1UGxqIHHLDWiJJPbOPdjbd2HvbcMYHsV4YT2BF9ZTsi1yixdUqzwWtVKxrWNONceYwf8KfJSX8q/yeOZZOkrd/GPim1zjWcUd9lpstXq8puuk8sffwFAVjqv8AChXKpTf8mVI5c8tQSImH0lyCCHENOTRPLTWLWbb7G68be1E/SapYoVkrgCApWuYunZBt5g9E6VwiPidNxO/bS3O9t34XnkVe28bzq69OLv24oYCpK68gtSayymdYr3vfGM2843ZY/9WFZWn3vEYsWDTcccOxnu45ad3XpD5CCGEEBeK3thIsbcX1XVpDFjs6UviVW2inga6Moeo1CiBXwr4q7H6yitQCgWsPfurfTx27EFLZ/Bu3op381Yqqkpu/pzDu7UsHKva1BSV6601XGou4eeZJ3i9sIMX8xt5o7CTe5xbWWEuo+S6+N7ST0NVYP1nbqAucvz1wcBwkisfeu6YRIfPI9vIThWS5BBCiGnKZ/qYO/cKOja+hjc3SqyukYxbIZUrksi5xLMFVEXBMlRMvcaBX9PIXLqUzKVL0QeG8K3fhG/jZvTRBKHHnyH4xDoyyxaRumoVuda5J6zuUI7K2KioxIJN7Fqxkor75p0fRddZvGXzCSs8hBBCiMlMC4XQYjHcgUHCdXVEvR5GMgVCdoRUIcFgZV810VHDHcUqpkn2kiVkL1kC5TKeQ51ju7WY/YPYe9uw97YR+emvKTQ1jPXxKLQ0EVT9fMD3btYUV/CT9GMMlof5j/SjbMhv4b3mu7hnxVU4pkauWEJVFHRVoS7iP2msNzUVt1yhXKlgGRrz6nw1+7qI8SVJDiGEmMZigUbCM5dRdkdJdB3A5wTxB0PE/BaZgksi55LOuWQKBXRNxdJV9Br37nDrooy+/XZG77gJ7xs78L3yKtbBDrxbd+LdupNiLFK9Y7R6BWWv95TnqrguHHXhU8MWrEIIIcR5URQFs6mJUn8/uC4NQYuRbAG3rBC1GuhSOokXRvAZfkzNOv0JLzRVJT9nFvk5sxi9+zb0gaFqH48du/EcOITZ04fZ00foqedwAz6yS6oJj0Wtc/l08D6ezb3MU9kX2ece5It9/8i+Db3cc9lt/H+3LqYp+Gb1xsli/a6/vAuAnniSrz51kPJb16+Ii5YkOYQQYpoLN8xj/oLZ9HTvZvDQHoyhXryqRdDrJRi0yPs8ZIol4pkCmWIJN+fi0VUsQ0OtZQMPwyB9xWWkr7gMo6cP3yuv4tv0OsbgMOFfPkHo8adJX7qM1FWryM+ZedJO7kIIIcRUoYXDaJEIpXicQCxKnc9DbzxH1OtQZ7Tgtx0SxWFy+Sxew4+mTp63g25dtLq9/NprUNMZ7F17q1Ueu/ehJ1L412/Cv34TZcMgt2g+71i6iNULP8h/qs+zq7iP77c9TKP9HE3Bx1j93dVQgY0fPPkuaau/sxoU2PiBjdy3dp5sHzuFyHdSCCEEfm+YwKKric5cwKHunQz1duCP57AGMngMHY/fRzjqJVMskc2XGM0WSOVdypXK4YSHXtMcQrGpgZF3vY3Ru2/Fu2UbvpdfxdPVg++1N/C99gaF5kbSV6+itPYudEWH04xVV3Up6xBCCHHRUTQNo7kFd3CISqlMfcBiJF0gWyyhKTp1ViMBM8hQrp9EcRRDNbE17zFLOieDstcZu5GB62LtP4izfTf2jt3o8QTOtl0423YRVWDh7JkcWLSMH8w9RJsyWD1BhdPGehTGYn2933MBZyMmmiQ5hBBCANVmnPXeekLzQnTVz6Jr+CDJ4WEiyQpaIgmlEo7XwfHZhH0m2UKJVK5IPFcknsmjqCq2oWJq2ukvLC6Qiscz1tzM7OjC98qreF/fztLv/QdGU7XJ6JG7OpmBHii/pQlbuUxmoIeNHzj2zk85n0f1yAWQEEKIyU+PRtDCYUqJBN5wmPqAh/ahDIf3jcXWfbR4bfzFUDXZURjG1n2Y2iSNc7pOblEruUWt8K67Mbp7xxIenq4erIMdLDnUxXefevKcY71t6hLrpxBJcgghhDiGqZnMDc4lYkXo8HfQn+rFyvgJpMsoQyPQP4Rqmnj9Dt6gRcznIV1wSeZcUjmXdD6PrmlYhopRw/4dhZktDM9sYfSeO1jWdHyTUcrlE174tK+99ZjGpUcalAkhhBAXA0XXMVuayW7bRqUcpM5vMZDIMeS+WaKoKBpBM4Kj+xjJDTBSGCRXyuLTfaiTaAnLcRSFYksT8ZYm4rffiDYax96xB2fXXgyJ9eKwSfwTLIQQopaCniA+w0fMjnEocYheb4JQwxzsZAH6h2AkAZUKms8hYFsEbIOCWyFTdElkXNIFl1S+iKlpWIaGVqP+HRXbrv75lsZjJ/WWCyJZtSKEEOJio0ejaIEA5WQSTzBIU9BiX3uFeK5I0FLHemoZqkm904LPDDKU6yNRGMWjWViaM+mWsJxIKRQkdc1q0teuASTWiypJcgghhDgpTdVo9DYS8oToSnbRle4iFYBwbB56KgeDIzA8Av2DYFmYXgfTNghZBjm3RDpfIp4tks67lCtlTF3DMnRq2a9UCCGEmOoU08RomUFux3bUQICYz8PMgI6lawyl8xiait/S0Q5XMzi6D8ux8BnBsSUsju7H0Mwaz0SIsydJDiGEEKdl6Rbzw/OJ2lEOJQ/Rn+nHsR0C82ehtDTAaKKa6BiOV/tx+LxYtgfL0Ih4TbLFEsmcSzJbJJEtoChgGRqeGvbvEEIIIaYyPRZF9fspp1KoXoegpdHa6CeZL9GXzDGSKaApCn7bQFdVVFUn7InhNXwM5wYZzQ+SK2XwGgFUpbbbxwtxNmr609re3s5HP/pRVq5cyY033sg3vvGNWg5HCCHEaYSsEEujS1kaXYqKSl+6j5wBNNXDJYtg+UJojEG+AH2DEE+ilEs4pkZDwMPcOi9zYl4iXpNSucJIpkAiW6Tglk/72udL0XU4+qGeJASq6jHHKbrcDzgfEuuFEKI2VMvCaGqinEqOPaepChGvh0UNARY1+gnaBolskeF0nmKpBICpWjTYLczwzcPRfSQKw+RKmVpN46xIrBdQw0qOcrnMfffdx/Lly/nJT35Ce3s7f/iHf0hDQwP33HNPrYYlhBDiNHRVp9nXTMgTojPVSU+qh1QxRdgTRgsHIRyEliyMxKFvCIZGQVXA70PzmPgtHb+lUyxVyBRcElmXVN4lnXcxdBVb19C08SvvqFQgl0wc11CsMDDA/rU3HtuQTFVZ8Pxz6NHoMcdKx/VzI7FeCCFqy6iro9jZSTmdPuZ5VVEIOx5Ctkk8V2QgmWckU6BSKeL3GJi6hs8IYGsO8cIwQ/l+4vkhvEYAXTVqNJuTO1mszwz0VJuMviXWz173JE5d0zHHSqyfOmqW5BgcHGTJkiU88MAD+Hw+5syZw9VXX82mTZvkwkcIIS4CjuGwILSAqBWlI9lBf6Yfn+nDb/rBsauPhjqIJw737hiF0Xj1ea+DoakEbYOgbZAvlkkXXBLZIumiSylXwaOrWIY21hzt3FV49tnHOLp/mqKq3H73e6p3ct5y4fPWBAcgFz3nSGK9EELUlur1ojc2ktvfdsKPK4pCyDYJ2QbJnMtgKs9gKk88V8Tv0bEMnYhVj2P4GckPMJofQlVUHN0/yZawVGO9qirc/rb/yurvrAaF6jaxJ4j1Tl0Tq7+7GipvbjcrsX7qqNlPZn19PV/+8pfx+XxUKhU2bdrExo0bWbNmTa2GJIQQ4iwpikLUjrIstoxF4UWUyiV6070USoXqAboG0TAsmgeXLob5s0HTYGC4mvjIV4/zGCoRr8nsqJe5US/NIQtdU0jmXUYzBXJFl8p5tT6vUKkc9XjrdnLigpBYL4QQtWc0NKB4TMjnT3GUgt8ymBvzsqQxSFPAIu+WGUjmyBZcLM2m0Z7JDO9cPKpNojBCvpSbsDmcmWqMB6r9vk533VBB+oJNUZNi8dHNN99Md3c3N910E3fcccdZfW7p8Nqx83HkHONxrouRzF/mf/Sf043Mf3zmr6LS7G0maAbpSHbQm+5FUzTCVvjNOz2WBU0WxKIQT8LA4W1o3Th4D1d+qCqWrmLpJiFbJ1Msk8q5JHNFRjJ5VMAyNUxNgfPY2k45zVXNuX49puvP0Zmodaw/+jzT9fsk85f5H/3ndDOt5+84qLEYyq5duKkUmm2jaNrJDzcVZkVsYj6DwVSRoVSeRK6AY2o4pg+P1yKeH2Y4P0jWTePV/WjqpHhbCRWFZCZRreA4jSMVHHk3j66c+fin5c/QRUapVM7v3th42Lp1K4ODgzzwwAPcdttt/Nmf/dlpP6dUKrFly5YLPzghhBBnpVKpEHfj9Bf6SbgJvJoXW7NPdCBqNoceT6GPJlCzeSqaRtlrUXlLA7BSuUKuVCFVrJAtlimVq20+TF1BP4dkh6Kq/Pff/V/sWrGSiuu++byus3jLZjZt2nTW5zzaihUr0E5xATkdSawXQogaymRQurohl0UpFjkSSCuGAYYBpnnSJp15t0wiV2Y0VyJfAktXsHSFQiVPojRMqpxER8dS7PO6ATFeFKV6I0RRVD78sf8psX4amhQpt+XLlwOQz+f5oz/6I/74j/8Y0zyzPZmXL19+3j9cpVKJrVu3jsu5LkYyf5m/zF/mfyHmXygV6En30JnspFguEvaEMbSTNCsrFN+s7hhNQqn0ZnXHWy6Yim6ZVN4lkSuSKZRwyxUMXcHSVbSTdVE/jnLCBmVQbTy2YsWKs5vsYUe+nuJ4tY71IP/fZf4yf5m/zP+SRYtQCgXK2SzlTIZyPEE5k6ZSKFApl1EUBcXjefNxVFzNF8sMpfMMpPJkCiUiusY8TyspN85wrp+Mm8YxfJjqZOltIbF+uqpp49EtW7Zw6623jj3X2tpKsVgklUoRiUTO6Dyapo3bL6rxPNfFSOYv85f5y/zHk63ZzDPnEfPG6Eh00JfpwyybBD3B45uV2Z7qoyEKyVS1SenAcDXp4THB5wWjGrI8pobH1Ij6PGTdEpl8idFsgWyhTLnsYhoqlqFzun6lR5qRDrTvA38d73v/R9A0TRqPjaPJGOsvxPkuNjJ/mb/Mf/rOX7dtNJ/vmOfK+TyVbJZyLkcplaI0GqeSy1JJpShXKqCoqJaFxzRpCTnUB2xGMkX6EzlGsy6WFmSG10+iOMxwfoCCm8dn+FAnwRKWI7E+3t/HSGKUj/3P+yXWTwM1+8nr7Ozkk5/8JOvWraOhoQGAbdu2EYlEzviiRwghxOQXMAMsiS4hZsc4lDxEX7qPoCeIYzjHH6woEPBXH00NMJqA/qFqlUe5VE122Fb1OAVsQ8M2NMJek2yhVK3wyBZIZAuoioLHUPFo2kkai1WoVKg2Ia1II9ILQWK9EEJMfqrHAx4PGmBQXXZayecpZ7NUcjlKySSlRJJKLks5HkepVIhoGkGvQcLW6cuUSeQqmGqUFsfPSKGfZGEUQzOxNW91+UjNHI71lTJlaTo+bdQsybF8+XKWLVvG/fffz5/8yZ/Q1dXFQw89xCc+8YlaDUkIIcQFoioqDd4GQlaIrlQXnclOUoUUETuCfrI7PR4TGmJQF4FkGoZGqo++IbAOV3fo2uHzg9ej4fVoxHwmmXyJZL5IMucyWsijqiqWrmHqk2m7u6lPYr0QQlx8FEVBsSxUywLAaGo6NvGRzVJKpigl4kRyOQJajkShyFDaJVFS8XpiOJafUXeAeGEIR/djalI5ISZOzZIcmqbxta99jS984Qv8zu/8DrZt88EPfpAPfehDtRqSEEKIC8yjeZgXnEfUitKeaKc/049t2ATN4Mnv9KgqBP3VR/Ph6o6+QRiJVz/uc6rVHYdpqoLf1vHbOsVShUzBJZ5xSRdcMnkXXVexdQ1Nq31ztKlOYr0QQkwNxyQ+wuE3Kz5yOcrZLL5sllg8wUjfEANDCZIDOUIlDwXDJaUMkzcNvHZoUixhEVNfTX/KGhoa+OpXv1rLIQghhKiBoCfIsugy6uw6DiUO0ZvuJWyFsXTr1J9oeaCxrlrdkUjB0Gi1uiORrG5R63PgqLXWhqYQtA2CtkG+WCZdcIlniqRdl3KugqmrlKkg9R0XjsR6IYSYmhRFQbFtVLu6g5rR0oKzuExDJsvwcILevlGG+4bwxnsp5vrIxw9hqiam5adiGFRMo7qb2iTYkUVMLZJKE0IIUROaqtHka6ouYUl20ZXqIllIErEiaOppmsJpGoSD1UfL4eqO3gEYih9eu+JUG5kexWOoeAyTsGOSLZbI5F3i2SIKyolbdgghhBDirCiqiuHz0uDzUjejkZFMga7hNH0Dw2TjneTy3ZBJECy6GOkiyuGtXSu6TsU0KB/Z0laI8yBJDiGEEDVl6zbzQ/OJ2BEOJQ4xkBnAMR0CZuAMT2BVH3XRakXHwDAMxyGeqG5B63OqS14OUxRwTA3HrDYs7UvYZDxSyyGEEEKMJ1VViPo8RLwmM6M+euJ1tI/MpifdTaIygFOqEKzY6PkiajqNms6ipdMobgk4kvgwKZsG6PK2VZw5+WkRQghRc4qiELEiBMwAfZk+2uPt9KZ6CdthPGfarEzXIBKqPtLZas+O/iEYHKlWd/h91WamR9FUBdtUKUl/DiGEEOKCUBSFsNck7DVpCTt0j0TYO9RDV6qThJYk6g9iN9ZDqYSaL6Dk86j5AmoyhZrNoaVSKEUXFJWKoVM2DSqGJD7EyclPhhBCiElDV3VafC2EPWE6kh10p7pRVZWIFUFVzqLawmtXH42x6vazA8PVpMfo4eoOr31MdYcQQgghLrxqn6wgMyIOnaP1bO87RFeyA0NPUO/EMBwbHJsSwJHERy6Pki+g5vOoyTRqLouaTKGUDld8GEY18WGax/TlEtOXJDmEEEJMOo7hsDC8kKgd5VDiEH2pPvwePz7Td3Yn0nWIhg9Xd2TerO4YGK5WfvjP8nxCCCGEOG9+y2BJY4RZ4QAHhhp5o6+Ng6Pd+Dw29U4E7ciNCE2j7HXA61QTH02A675Z8ZHLo6aqFR9qPFlNfChUl7kcbm4qiY/pR5IcQgghJiVFUYjZMYJmkJ50Dx3JDnpTvUTsCKZmnv4Ex54MfN7qo7EORg9Xd4zGUXIFkFyHEEIIMeG8Hp1LmhuZG42ye7CL13v3sX+kk4gVJur4T7zxiq5T1vU3Ex8ARRe1kEfNFVByOdRUupr4yGZRymWMdGYCZyVqTZIcQgghJjVDM5gVmEXYCtOZ7KQ33Yuu6YQ8obNbwjJ2QqO6BW0sDMk0xU6NcmL8xy2EEEKIM+P1GFzeMof50Xq297WzfaCN/SNxop4YQcdCPV3rLEOnbOiUvd6xp5Ri8fAylwLpwV5yAwMXdhJi0pAkhxBCiIuC3/SzKLKIqB2lPdFOX7qPoCeIYzjndkJFgYCP0sxGSl1yh0cIIYSotaDlcM3sJSyMNbG1fx+7BzuJj2oEPSECloF22mzHmypGtUFp2ecla1ZIqZULOHIxmUiSQwghxEVDVVTqnXqCniDdqW46k50kC0midhRdlZAmhBBCTAUxb4gbZq+kNdrMtv79HBoZoi/lYOs2fstAP4tkh5h+5IpQCCHERcejeZgbnEvEitCR7KAv3YelWwQ9QZQTLuAVQgghxMVEUzVmBpqJOWEOhTvZNdjOYDrOSMaHpmgELANdtoAXJyBJDiGEEBetoCeIz/ARs2O0J9rpTfcSskLYul3roQkhhBBiHNi6zaLoAuq9Mdrj7RwY7SWT1YlnK6CA32Ng6rItvHiTJDmEEEJc1DRVo9HbSNATpCvZRXe6m1QhRdgKyxIWIYQQYooIW2H8pp96bz0H4wfpTydwCw7pvEsiV8HvMfAYkuwQkuQQQggxRdi6TWu4lagd5VDyEAOZAbyGF7/plyUsQgghxBSgqzrNvmZCnhAdyQ66U904xTKlosNIukQyX8DnMbAMrdZDFTUkSQ4hhBBTypE7Pf12/9gSlogdwaN5aj00IYQQQowDx3BYGF5I1I7SkehgKDeE17bJ5xwGU3mSORefR8c2NJD7HNOOJDmEEEJMOW+909OT7kFRFCJWBFWRUlYhhBDiYqcoCjE7RtATpDfVy6HkISpWglZvkES2wkCywEAqh2PqyOax04skOYQQQkxZR+70xOwYhxKH6Ev34TN9+E1/rYcmhBBCiHFgqAYzAzMJW2E6kh30pntxbJ1FPj/xjEtfMk+64NZ6mGICSZJDCCHElKYoClE7SsATGLvT05uqLmExNbPWwxNCCCHEOPCZPhZFFo3tuDaaHyTgDRD1BXDMHG1JqeScLiTJIYQQYlo40Z0eXdUpV8q1HpoQQgghxoGqqNQ5dQQ9QbpT3XSmOkmVUkR9BmmvNCOdLiSdJYQQYlrxmT4WRxZzSewSbN2mWC7WekhCCCGEGEemZjInOIdL6y6lwWkgV8rVekhiAkklhxBCiGlHUZSxOz2dnk7aBtpqPSQhhBBCjLOAGWBJdAlhM8xr3a/VejhigkglhxBCiGnL1ExmB2YTNsK1HooQQgghLgBVUWnwNtBkNdV6KGKCSJJDCCGEEEIIIYQQU4IkOYQQQgghhBBCCDElSJJDCCGEEEIIIYQQU4IkOYQQQgghhBBCCDElSJJDCCGEEEIIIYQQU4IkOYQQQgghhBBCCDElSJJDCCGEEEIIIYQQU4IkOYQQQgghhBBCCDElSJJDCCGEEEIIIYQQU4IkOYQQQgghhBBCCDElSJJDCCGEEEIIIYQQU4Je6wGcq0qlAkCpVDrvcx05x3ic62Ik85f5H/3ndCPzn97zh/H9Ghw5x5EYJc7PeMb6o88zXX/eZf4y/6P/nG5k/jL/o/8cj3NJrJ+8lMpF+t0pFAps3bq11sMQQgghjrN8+XJM06z1MC56EuuFEEJMVhLrJ6+LNslRLpdxXRdVVVEUpdbDEUIIIahUKpTLZXRdR1VlRej5klgvhBBispFYP/ldtEkOIYQQQgghhBBCiKNJ6kkIIYQQQgghhBBTgiQ5hBBCCCGEEEIIMSVIkkMIIYQQQgghhBBTgiQ5hBBCCCGEEEIIMSVIkkMIIYQQQgghhBBTgiQ5hBBCCCGEEEIIMSVIkkMIIYQQQgghhBBTwrRPcuTzee6//35WrVrFddddx7/+67/Wekg1USgUePvb38769etrPZQJ1dfXx6c+9SnWrFnD9ddfzxe/+EXy+XythzVh2tvb+ehHP8rKlSu58cYb+cY3vlHrIdXMfffdx+c+97laD2NCPfHEEyxatOiYx6c+9alaD2vCFAoFPv/5z7N69WquueYa/v7v/55KpVLrYYkLQGJ9lcR6ifUS66dfrAeJ9xLvpx+91gOotQcffJBt27bxrW99i+7ubj772c/S3NzMnXfeWeuhTZh8Ps+nP/1p9u7dW+uhTKhKpcKnPvUpAoEA3/ve94jH49x///2oqspnP/vZWg/vgiuXy9x3330sX76cn/zkJ7S3t/OHf/iHNDQ0cM8999R6eBPql7/8JevWreNd73pXrYcyofbt28dNN93EF77whbHnPB5PDUc0sf7yL/+S9evX881vfpN0Os0f/MEf0NzczHvf+95aD02MM4n1Eusl1kusn66xHiTeS7yffqZ1kiOTyfCjH/2I//f//h/Lli1j2bJl7N27l+9973vT5sJn3759fPrTn56W2cy2tja2bNnCiy++SCwWA+BTn/oUf/u3fzstLnwGBwdZsmQJDzzwAD6fjzlz5nD11VezadOmaXXhMzo6yoMPPsjy5ctrPZQJt3//fhYuXEhdXV2thzLhRkdH+fGPf8y//du/cemllwLwkY98hNdff10ueqYYifUS6yXWS6yfzrEeJN5LvJ9+pvVylV27duG6LitXrhx77oorruD111+nXC7XcGQTZ8OGDVx55ZX84Ac/qPVQJlxdXR3f+MY3xi56jkilUjUa0cSqr6/ny1/+Mj6fj0qlwqZNm9i4cSNr1qyp9dAm1N/+7d/yjne8g9bW1loPZcLt37+fOXPm1HoYNbFp0yZ8Pt8xP+/33XcfX/ziF2s4KnEhSKyXWC+xXmL9dI71IPFe4v30M62THAMDA4TDYUzTHHsuFouRz+cZHR2t3cAm0L333sv999+Pbdu1HsqECwQCXH/99WP/LpfLfPe73+Wqq66q4ahq4+abb+bee+9l5cqV3HHHHbUezoR5+eWXefXVV/m93/u9Wg9lwlUqFQ4cOMALL7zAHXfcwa233srf/d3fUSgUaj20CdHR0UFLSwuPPvood955J7fccgv/9E//NG3e9E4nEusl1kusr5JYP/1iPUi8l3g/PU3rJEc2mz3mogcY+/d0+Y8v3vTQQw+xY8cO/uAP/qDWQ5lw/+f//B/++Z//mZ07d06bzHY+n+cv/uIv+PM//3Msy6r1cCZcd3f32O/AL3/5y3z2s5/l5z//OQ8++GCthzYhMpkM7e3tfP/73+eLX/win/3sZ/nOd77Dv//7v9d6aGKcSawXR5NYL7F+upF4L/F+OprWPTk8Hs9xFzhH/j1dfxFOVw899BDf+ta3+Id/+AcWLlxY6+FMuCNrVPP5PH/0R3/EH//xHx/3pmCq+epXv8oll1xyzB2+6aSlpYX169cTDAZRFIUlS5ZQLpf5zGc+w5/8yZ+gaVqth3hB6bpOKpXiS1/6Ei0tLUD1QvDhhx/mIx/5SI1HJ8aTxHpxhMR6ifXTkcR7iffT0bROcjQ0NDAyMoLruuh69UsxMDCAZVkEAoEaj05MlC984Qs8/PDDPPTQQ9OqfHNwcJAtW7Zw6623jj3X2tpKsVgklUoRiURqOLoL75e//CWDg4Nj6/SPvOl5/PHH2bx5cy2HNmFCodAx/54/fz75fJ54PD7lv/91dXV4PJ6xCx6AuXPn0tPTU8NRiQtBYr0AifUS66dvrAeJ9xLvp59pvVxlyZIl6LrOli1bxp7btGkTy5cvR1Wn9Zdm2vjqV7/K97//ff7+7/+et73tbbUezoTq7Ozkk5/8JH19fWPPbdu2jUgkMuUDHsB3vvMdfv7zn/Poo4/y6KOPcvPNN3PzzTfz6KOP1npoE+L555/nyiuvJJvNjj23c+dOQqHQtPj+X3bZZeTzeQ4cODD2XFtb2zEXQWJqkFgvJNZLrJ+usR4k3ku8n56mdXS3bZt3vvOdPPDAA7zxxhs8+eST/Ou//isf+tCHaj00MQH279/P1772NX73d3+XK664goGBgbHHdLB8+XKWLVvG/fffz759+1i3bh0PPfQQn/jEJ2o9tAnR0tLC7Nmzxx5erxev18vs2bNrPbQJsXLlSjweD3/2Z39GW1sb69at48EHH+RjH/tYrYc2IebNm8eNN97In/zJn7Br1y6ef/55vv71r/O+972v1kMT40xi/fQmsV5i/XSO9SDxXuL99KRUpuOm6UfJZrM88MAD/OY3v8Hn8/HRj36UD3/4w7UeVk0sWrSIb3/721x55ZW1HsqE+PrXv86XvvSlE35s9+7dEzya2ujr6+MLX/gCL7/8MrZt84EPfICPf/zjKIpS66FNuM997nMA/M3f/E2NRzJx9u7dy1//9V+zZcsWvF4v733ve/n93//9afP9TyaTfOELX+CJJ57Atm3uvffeaTX/6URi/Zsk1r9JYv30+103HWM9SLyXeD/9TPskhxBCCCGEEEIIIaaGab1cRQghhBBCCCGEEFOHJDmEEEIIIYQQQggxJUiSQwghhBBCCCGEEFOCJDmEEEIIIYQQQggxJUiSQwghhBBCCCGEEFOCJDmEEEIIIYQQQggxJUiSQwghhBBCCCGEEFOCJDmEEEIIIYQQQggxJUiSQ4hp6itf+Qof/OAHT3vcBz/4Qb7yla9MwIiEEEIIMZ4k1gshpiO91gMQQkxuX/nKVzAMo9bDEEIIIcQFIrFeCDGVSJJDCHFKoVCo1kMQQgghxAUksV4IMZXIchUhpol9+/bxvve9j8suu4wPfehDjIyMAPDII4/wvve9j7/7u79j5cqV3HjjjfzoRz8a+zwpYRVCCCEuDhLrhRBCkhxCTAuFQoH77ruPmTNn8sgjj3DHHXfwgx/8YOzjW7duZefOnfzgBz/gk5/8JJ///Od54YUXajhiIYQQQpwNifVCCFEly1WEmAZeeuklRkdHeeCBB3Ach/nz57NhwwaGh4cBUBSFBx98kGg0ysKFC9m4cSM//OEPue6662o8ciGEEEKcCYn1QghRJZUcQkwD+/btY86cOTiOM/bc8uXLx/4+e/ZsotHo2L8vueQS9u/fP6FjFEIIIcS5k1gvhBBVkuQQYpqoVCrH/PvoLuq6fmxRV6lUQlXl14MQQghxMZFYL4QQkuQQYlpYsGABBw8eJJlMjj23c+fOsb+3t7eTTqfH/r1t2zYWLlw4oWMUQgghxLmTWC+EEFWS5BBiGrjmmmtoamriT//0T9m/fz+PPPIIv/rVr8Y+nslk+Iu/+Av279/PD3/4Qx577DHuvffeGo5YCCGEEGdDYr0QQlRJkkOIacAwDP7lX/6FeDzOu971Lh5++GHe//73j328qamJuro63vOe9/CNb3yDhx56iCuuuKKGIxZCCCHE2ZBYL4QQVUrlrYv3hBDTyiOPPMJXv/pVnn766VoPRQghhBAXgMR6IcR0IpUcQgghhBBCCCGEmBIkySGEEEIIIYQQQogpQZarCCGEEEIIIYQQYkqQSg4hhBBCCCGEEEJMCZLkEEIIIYQQQgghxJQgSQ4hhBBCCCGEEEJMCZLkEEIIIYQQQgghxJQgSQ4hhBBCCCGEEEJMCZLkEEIIIYQQQgghxJQgSQ4hhBBCCCGEEEJMCZLkEEIIIYQQQgghxJTw/wM7qbpDh46IUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig = Figure(figsize=(12, 4))\n", "ax_oiv, ax_p_oiv = fig.subplots(nrows=1, ncols=2)\n", "\n", "full_oiv = \"OIV 452-1\"\n", "df_oiv = df.copy()\n", "df_oiv[full_oiv] = df_oiv.oiv\n", "df_p_oiv = df.copy()\n", "df_p_oiv[full_oiv] = df_p_oiv.p_oiv\n", "\n", "var = \"gen\"\n", "\n", "lpgd.plot_single_progression(\n", " ax=ax_oiv, df=df_oiv, target=full_oiv, title=\"Human scored OIV 452-1\"\n", ")\n", "\n", "lpgd.plot_single_progression(\n", " ax=ax_p_oiv,\n", " df=df_p_oiv,\n", " target=full_oiv,\n", " title=\"Model predicted OIV 452-1\",\n", " show_legend=True,\n", ")\n", "\n", "fig" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABRgAAAINCAYAAABVpBO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5z0lEQVR4nOzdeXwV1f3/8ffcmxUSITuEUHYpi4EoEkGoCBUUgQouKEhVEAFBVChVkFUoICBqK4t+DSpLZQcXoLgg1J8VEAVEraxCWSQJYQsk5Ca58/sj5EoMCExy783E19MHj5iZO3POyefO3LnvO3PHME3TFAAAAAAAAABY4PB3BwAAAAAAAADYFwEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALAvwdwe8xe12Ky8vTw6HQ4Zh+Ls7AAAAAAAAgK2Ypim3262AgAA5HJc+T7HcBox5eXnasWOHv7sBAAAAAAAA2Np1112noKCgS84vtwFjYap63XXXyel0+rk3+DX5+fnasWMHtfqNov7gOfDbRv1/26j/bxv1/22j/r9t1P+3jfrbS2G9fu3sRakcB4yFl0U7nU6esDZBrX7bqD94Dvy2Uf/fNur/20b9f9uo/28b9f9to/72crmvH+QmLwAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLyu13MAIAAAAAAKD8ME1TeXl5ys/P93dXyg2n06mAgIDLfsfi5RAwAgAAAAAAoExzuVz66aeflJWV5e+ulDsVKlRQ1apVFRQUZHkdBIwAAAAAAAAos9xut3788Uc5nU7Fx8crKCioxGfcoeCMUJfLpfT0dP3444+qV6+eHA5r36ZIwAgAAAAAAIAyy+Vyye12q3r16qpQoYK/u1OuhIaGKjAwUAcOHJDL5VJISIil9XCTFwAAAAAAAJR5Vs+uw68rjb8rlQEAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAOAKHDx4UA8//LCaNGmizp07KyUlRW3btpUkbdmyRd26dVNiYqI6d+6stWvXepZ79tlnNWnSJD311FNq0qSJbrnlFq1cudJPoyh9BIwAAAAAAADAZeTl5alfv3665pprtGzZMj322GN69dVXJUnp6enq16+funXrpvfff1+PPvqonn32WW3ZssWz/IIFC9SoUSN98MEHat++vcaMGaPMzEx/DadUBfi7AwAAAAAAAEBZt3HjRv30009avHixwsLCVLduXe3atUurVq3SggUL1LJlSz344IOSpBo1aui///2v3n77bTVr1kySVL9+ffXt21eS9OSTT2ru3LnavXu3rr/+er+NqbQQMAIAAAAAAACXsXPnTtWqVUthYWGeaU2bNtWqVau0b98+ffrpp0pKSvLMy83NVa1atTy/16xZ0/P/hevIy8vzfsd9gIARAAAAAAAAuAyn0ynTNItMK/w9Ly9PnTt3Vv/+/YvMDwj4OXoLDAwsts5frs+u+A5GAAAAAAAA4DLq1aun/fv368yZM55p3333nSSpVq1aOnDggGrUqOH598knn+j999/3V3d9ioARgN+Fhob6uwvwM54Dv23U/7eN+v+2UX/gt4vt/7fNrvVv0aKFqlatqlGjRmnv3r3617/+pblz50qSevTooW+//VYvvfSS9u/fr/fff1/Tp09XfHy8n3vtGwSMgE2ZKh+nUTudTjVs2FBOp9PfXSk1vqhNeTmNXip/zwFf1Ib6l12+qk15eQ5Q/7LdjrdRf+DqlZfnGdt/2W7H2+xcf4fDoX/84x9KTU3Vn/70J82cOVPdunVTYGCgqlWrptmzZ+uzzz5Tp06d9PLLL+vZZ59Vly5d/N1tn+A7GAGbMmTI1BFJLn93pURMt6mMjAxFRUXJcBj+7k4pCJIh739CZRiG0lIzleuy/xcCm5Iyjh1TVHS07P4MCAwKUGxcuNfbMQxD7u+/kZl11utteZvbNHU845gio6LlMOz9DDAqVJSjYaJv2jIMfX/klLJy7L0PMOVWxrHjioqOlGHzz70rBAeoYXwln7RlGIbcP30luTJ90p63mG73BccA9q6/gsLlqHqDv3uB3wDDMJT23zS5suz/HuBYRoaiy8F7gKAKQYptEOuTtgzD0Ilzx5Rn5vqkPW9xm6YyMo4p6iqO/3JzcpVv5ivX7ZLT7b/XjIyMDB08/D+9Pf8tSQXvy9+a87ZiYwueAy1bttTy5csvuuzkyZOLTdu5c6fX+uprBIyArbkk5fi7EyVkKjf3jKQwyfbxkm/luvLkcuX7uxslZpqmzp49p/DwPBk2D5h8ycw6K52xd7ggSTLdyj1xXAoOkgx7Bwy+PqcgKydPZ+weMJpunTiTreCwPBk2r7/PuTKlnFP+7kXJuN3KPXNMCguQ7B4wAj7kynLJdcbeAaPbbersibMKDw6Xw+YBo6/lmbnKdds9YHQrOydLuW6XHFf4+p/nzpNMU6bp3zM5TdPUoMef0DPD/6rWrVvrf//7n95+++1iN3b5LSJgBAAAAAAAAC4jKipK06ZP06v/eFVTJk9VVFSUHnzwQfXo0cPfXfM7AkYAAAAAAADgCrRtd6vatrtVUsFl64GOID/3qGzgWgQAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAGBbho/+KwmXy6VOnTpp06ZNnmnbtm3T/fffr6SkJHXo0EFLlizxzGvbtq3q169f7N+rr74qSTp9+rSee+45tWzZUjfddJOeffZZnT59ukR9LIkAv7UMAAAAAAAAlECgI0iGUbLw70qZpqlct+uql8vJydHQoUO1e/duz7T09HT17dtXDzzwgCZPnqzvvvtOw4cPV0xMjNq0aaOlS5cqPz/f8/i1a9fq5ZdfVteuXSVJY8aM0f/+9z+9/vrrMgxDY8eO1ciRI/X3v/+95AO1gIARAAAAAAAAtmPIkGEY+uFkurLycr3aVoWAQP2+cowMGTJlXvFye/bs0dChQ2WaRZf5+OOPFR0drSFDhkiSatasqU2bNun9999XmzZtFBkZ6XlsZmamZsyYoWeeeUbVqlVTVlaW1q5dq3feeUeNGzeWJI0YMUI9e/ZUTk6OgoODS2HEV4eAEQAAAAAAALaVlZers3lXf2ahL2zevFnJycl6+umn1bRpU8/01q1bq0GDBsUef+bMmWLTUlJSFBMTo7vvvluS5HA4NHv27GLL5+fn6+zZswoODtb06dO1fPlynT59Wk2aNNHo0aNVr1690h3cBfgORgAAAAAAAMALevTooREjRig0NLTI9ISEhCKBY0ZGhlatWqUWLVoUeVx2drbmz5+v/v37y+EoiPFCQkL0hz/8QUFBQZ7HzZ07V/Xr11dkZKQ++ugjLVq0SC+//LI++OADRUdHa/jw4d4bpDiDEQAAAAAAAPCbc+fO6YknnlB0dLS6d+9eZN7q1atVoUIFtW/f/pLLz58/X2vWrNEbb7whSTp8+LACAwMVHx+v+Ph4jRo1Svv27fPqGDiDEQAAAAAAAPCDs2fPql+/ftq/f79ee+21Ymc6rl27Vh07dlRAwMXPEVywYIEmTJig4cOHq1WrVpKkO++8UyEhIWrXrp0eeOABrVixwquXR0sEjAAAAAAAAIDPnTlzRn369NHu3bv19ttvq2bNmkXmu1wubd68WX/84x8vunxKSoqef/55DRs2TA899JBnekxMjNasWaNZs2bp2muvVUpKiu677z5lZ2d7bSwEjAAAAAAAAIAPud1uDRo0SIcOHdK8efMueobhzp07lZeXp8TExGLzVqxYoSlTpmj48OHq06dPkXnr16/XkiVL1KZNG40bN07vvvuu9u/fr127dnltPHwHIwAAAAAAAOBDS5cu1aZNmzRr1ixdc801Sk9PlyQFBgaqcuXKkqTdu3crISGhyM1cJOnkyZN6/vnn1bVrV915552eZSUpMjJSbrdbU6ZMUUxMjBo0aKBVq1YpNDS02BmSpYmAEQAAAAAAALZVISDQdm2sXbtWbrdb/fr1KzK9efPmmjdvniTp2LFjqlSpUrFlP//8c2VlZWnFihVasWJFkXmffPKJ2rZtq8GDB2vSpElKT09X7dq1NXPmzIuuq7QQMAIAAAAAAMB2TJkyTVO/rxzjm/ZMU6ZMy8vv3LnT8/8pKSmXffxjjz2mxx57rNj0O++8U3feeeevLtu7d2/17t376jtpEQEjAAAAAAAAbCnX7ZIhwydtlSRcLO8IGAEAAAAAAGBbBH/+x12kAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJaViYDR5XKpU6dO2rRpk2fatm3bdP/99yspKUkdOnTQkiVL/NhDAAAAAAAAABfj94AxJydHQ4YM0e7duz3T0tPT1bdvXzVv3lwrVqzQ4MGDNX78eK1fv95/HQUAAAAAAABQjF/vIr1nzx4NHTpUpln0bj8ff/yxoqOjNWTIEElSzZo1tWnTJr3//vtq06aNH3oKAAAAAAAA4GL8GjBu3rxZycnJevrpp9W0aVPP9NatW6tBgwbFHn/mzBkf9g4AAAAAAADA5fj1EukePXpoxIgRCg0NLTI9ISGhSOCYkZGhVatWqUWLFj7uIQAAAAAAAMoyw0f/lYSV+4+88847ateuna6//nr16dNHBw8e9Mw7ffq0nnvuObVs2VI33XSTnn32WZ0+fbpEfSwJv57BeCXOnTunJ554QtHR0erevftVL5+fn++FXqE0FdaIWl0dp9Mp021KMi/72LLMbbo9Px1uv38tbCkwZTi8/3x2Op0ypWJfMWFHbrfb89PhsPdzoLAavqi/2zSl89uPnRXsxwp+uh02H49pyinfvJ4V7APcMm3+HHCfr7/bbcph8/qbKui/z+rvdktum//Nzr+GmaZp+7EU9p/j2SvndrsVGhrqOQ7AlSl8D1C4/7Srwtcv03TLbfP3AIXHMr7a/7tN0/Meyq6sHP+5TfOS73wDHUEyjJKFf1fKNE3lul0XTPh5+q/JycnRX/7yF+3evVumaco0Tc/9R+6//35NmjRJ3333nUaMGKHo6Gi1adNGn332maZOnapp06apZs2amj59ugYOHKh3331XkjRmzBj973//02uvvSbDMDRu3DiNHDlSr7zyiqVxmaap/Pz8Ys/lK31ul+mA8ezZs3r88ce1f/9+/fOf/yx2puOV2LFjhxd6Bm+gVlcuNDRUDRs2VEZGhnJzy8dXB6Slpvm7C6UiMDBMMTG1tHPnTmVnZ3ulDU/9jx3T2bPnvNKGP6Sl2f85ULFiiBKqR/ik/sczjin3xHGvtOEPaWmp/u5CiQVGuBQnebX+0oX7gOM6ccZ77fhSedj+I8JCpVoxvqt/RoZyzxzzWju+lJpaDrb/sDzF1vL+9h8YGKhGjRrJ6XR6rQ1fcTqdatiwob+7UWry8/P13XffKTc312ttFG7/xzIydPbEWa+140up5eA9QMWIiqqu6j7c/x9Tdk6W19rxpas6/suXAvJDlJeXq9zcn0Nph+FQULChvPyDMk3vvjcyjBAFOKsrPy/fE/I6HA4FOoN07ty5S35gsm/fPo0YMcITQubk5CgrK0tr1qxRZGSk+vfvL0mKjY3VnXfeqXfffVfNmzfXunXrdNNNNyk5OVmS9Oijj6p79+46fPiwQkJCtHbtWs2ZM0e1a9eWJD399NN69NFHdeLECQUHB1/V2HJycpSbm6sffvjB0t9GKsMB45kzZ/Too4/qf//7n95++23VrFnT0nquu+66cvECXJ7l5+drx44d1MqCqKgoSWH+7kaJuE230lLTFBsXK4dh708vCxTsyOvXr+/1lqKioxUenuf1drzN7XYrLS1NsbGxtj+DMSi44GXVF/WPjIqWgoO83o63mW5TaWmpio2Nk+HwzSfPXhN2jSTf1F+SoqIjFRxm732A221esP3bu/5hIb7b/qXzxwBhZfZQ/oqYpqnU1FTFxcX57MwTrwmuJMk39Xc6nTqS+bVy8u39IbNpunX8xHFFRkTKsPkxYLAzTPHh16tRo0Y+aS86KkrhweE+actbTNOt1NQ0xcXF2r/+YQXHY77b/0cXPYPOhqwc/+Xl5CvzaJYCAgIVGBjome65bNnIlWF4L+AvUJBXBAQEqPB8ysL2Q0JCLrnUjh071KJFCz311FNKSkpScHCwKlSooLZt2yoxMVEVKlTwPDYgIEBZWVmqUKGCoqOjtXbtWh09elS/+93vtHbtWlWrVk1VqlRRbm6uZs+eraSkJAUFBXn6UHi2YYUKFTR9+nStWLFCp0+fVmJiokaPHq169epdtI8Oh0OBgYGqW7dusbEUZjaXUyaPStxutwYNGqRDhw5p3rx5qlOnjuV1OZ1OQiuboFZXr2BnbO8D8sLLoh2Gw/7hgqTCevjiuWxI9n9DJnlCRYfDYfvxFPbeF/V3GIZk8wNySZ7LYgyHYf8PGQzfbf+SZMhh+zdlhZdFOxyG7cdinP9qc5/V3+GQbP6hTOFlxYZhFIzHzhy+rb/LPCOX6b/v2SoNptvUmXMZCnMH2v4Y0Dh/ZaTvtn/D9h/KFF4WbRgO24+l8Pnrq/o7DPsfM1k5/nMY7rL5zrcw3/yV9zE9evQouohhyDAMVa9eXdWrV/dMz8jI0OrVq/XEE0/IMAz16tVLX3zxhTp27Cin06nQ0FAtWLBAAQEBCggI0B/+8Ici6503b57q16+vyMhIffTRR1q8eLFmzJih2NhYvfTSSxoxYoSWLl168WGc71NJcpkyGTAuXbpUmzZt0qxZs3TNNdcoPT1dUsElAZUrV/Zv5wAAAAAAAIBScrH7j6SlpSknJ0fTpk1TjRo1NHPmTA0bNkxLly4tdgn0/PnztWbNGr3xxhuSpMOHDyswMFDx8fGKj4/XqFGjtG/fPq+OoUwGjGvXrpXb7Va/fv2KTG/evLnmzZvnp14BAAAAAAAApedS9x8ZM2aM2rdvr86dO0uSXnzxRbVp00affPKJOnbs6Fl+wYIFmjBhgoYPH65WrVpJku68807Nnz9f7dq1U9OmTfXHP/5R99xzj1fHUWYCxp07d3r+PyUlxY89AQAAAAAAALzr1+4/8t1333luACNJFStWVI0aNXT48GHPtJSUFE2ZMkV//etf9dBDD3mmx8TEaM2aNfr888/16aefKiUlRYsXL9bKlSst3UD5Stj7wn0AAAAAAADAZn55/5Ff3oAlNjZWe/fu9fzucrl06NAhJSQkSJJWrFihKVOmaPjw4erTp0+RZdevX68lS5aoTZs2GjdunN59913t379fu3bt8tp4yswZjAAAAAAAAMBvweXuP3Lvvfdq9uzZqlmzpmrUqKHXXntNFStWVNu2bXXy5Ek9//zz6tq1q+68807PspIUGRkpt9utKVOmKCYmRg0aNNCqVasUGhpa5AzJ0kbACAAAAAAAANsyFCTTB22Upsvdf6TwrMQJEybo5MmTSkpK0ltvvaXg4GB9/PHHysrK0ooVK7RixYoiy3/yySdq27atBg8erEmTJik9PV21a9fWzJkzValSpVIdw4UIGAEAAAAAAGA7pkyZpimnI8E37ZmmzBJEmVdz/xGn06nHHntMjz32WLF5d955p+68885fXb53797q3bu3tY5aQMAIAAAAAAAAW8p1u2TI8ElbJQkXyzsCRgAAAAAAANgWwZ//cRdpAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAANsyfPRfSbhcLnXq1EmbNm3yTPvss8/UpUsXJSYmqkuXLtqwYUORZf7zn/+oU6dOatKkif785z/r4MGDF133G2+8obZt25aofyVFwAgAAAAAAABbCnQEKdDpo3+OIEt9zMnJ0ZAhQ7R7927PtAMHDmjQoEHq1q2bVq1apa5du2rgwIE6dOiQJOnIkSMaOHCgunXrpqVLlyoyMlKPP/64TNMssu6DBw/q1Vdftf4HLCUB/u4AAAAAAAAAcLUMGTIMQ0ePnlJubp5X2woMDFCVKpVkyJAp8/ILnLdnzx4NHTq0WDB49OhR3XfffXr44YclSY888ohmzZqlb775RgkJCVqyZIkaN26s3r17S5ImTZqkm2++WZs3b1ZycrJnPWPGjFGDBg2Umppa8kGWAGcwAgAAAAAAwLZyc/OUk+Pdf1YDzMJAcNGiRUWmJycn67nnnjvf/1wtWbJELpdLiYmJkqTt27erWbNmnseHhoaqUaNG2rZtm2faypUrlZ2drXvuuadYu9OnT1erVq2UmJioXr16FTl70hs4gxEAAAAAAADwgh49evzq/AMHDuiOO+5Qfn6+hg4dqoSEBElSenq6YmNjizw2KipKR48elSQdP35c06ZN05tvvqkdO3YUedxHH32kRYsWacaMGYqNjdVLL72k4cOHa+nSpaU4sqIIGAEAAAAAAAA/iIyM1NKlS7V161ZNnjxZNWrUUIcOHZSdna2goKLf+RgUFCSXyyVJmjhxorp27ap69eoVCxgPHz6swMBAxcfHKz4+XqNGjdK+ffu8Og4ukQYAAAAAAAD8IDw8XA0bNlTPnj117733av78+ZKk4OBgT5hYyOVyKTQ0VJ999pm2bdumgQMHXnSdd955p0JCQtSuXTs98MADWrFiherVq+fVcRAwAgAAAAAAAD60e/dubdmypci0OnXq6MSJE5KkuLg4HTt2rMj8Y8eOKSYmRqtXr9bRo0fVokULJSUlacyYMTpy5IiSkpK0ZcsWxcTEaM2aNZo1a5auvfZapaSk6L777lN2drbXxsMl0gAAAAAAAIAPffrpp1q+fLnWrFkjwzAkSd99951q164tSWrSpIm++uorz+Ozs7P1/fffa9CgQbrnnnvUv39/z7wPP/xQ8+bN07x58xQXF6f169fryJEj6tGjh9q0aaNBgwapVatW2rVrl5o0aeKV8XAGIwAAAAAAAOBDXbp0UXp6uqZNm6b9+/drwYIFeu+999SvXz9J0t13362vv/5ar7/+unbv3q3hw4crISFBycnJioqKUo0aNTz/oqKiFBAQoBo1aigkJERut1tTpkzRRx99pEOHDmn58uUKDQ1VzZo1vTYezmAEAAAAAACAbQUGej/eKu02qlSpopSUFE2cOFHz589XtWrV9Morr6hRo0aSpISEBP3jH//QxIkTNWPGDCUlJWnGjBmesx1/Tdu2bTV48GBNmjRJ6enpql27tmbOnKlKlSqV6hguRMAIAAAAAAAA2zFlyjRNVaniveCsSHumKVOm5eV37txZ5PemTZtq8eLFl3z8LbfcoltuueWy6+3WrZu6detWZFrv3r3Vu3dvax21gIARAAAAAAAAtpTrdsnQ5c/qKw0lCRfLOwJGlAmhoaH+7gIAAAAAALAhgj//I2C0MdM0r+ja+7LO6XSqYcOG/u5GqSovtQEAAAAAALgcAkYbMwxDu05lKDsv199dKRHTNJWRkaGoqKhyEcqFBgTq2kpR/u4GAAAAAACATxAw2lx2Xq7OloOA8WR2lkLyrikXASMAAAAAAMBvicPfHQAAAAAAAABgXwSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAGBbho/+KwmXy6VOnTpp06ZNnmmfffaZunTposTERHXp0kUbNmwossybb76pNm3aqEmTJurTp4/279/vmZeVlaWRI0cqOTlZN954o0aNGqWzZ8+WqI8lQcAIAAAAAAAAWwp0BCrQGeSbf45AS33MycnRkCFDtHv3bs+0AwcOaNCgQerWrZtWrVqlrl27auDAgTp06JAk6b333tOMGTM0btw4vfvuu6pcubL69+8v0zQlSRMnTtS3336rlJQUvfXWW/rmm280efLkkv9BLQrwW8sAAAAAAACARYYMGYZDed9vk3n2jHfbqhimgIZNZciQKfOKl9uzZ4+GDh3qCQYLHT16VPfdd58efvhhSdIjjzyiWbNm6ZtvvlFCQoIyMzM1bNgw3XLLLZKkvn376k9/+pOOHz+uqKgoBQYGatSoUWrcuLEk6e6779bChQtLZ7AWEDACAAAAAADAtsyzZ2SeOe3vblzU5s2blZycrKefflpNmzb1TE9OTlZycrIkKTc3VytXrpTL5VJiYqIkqWfPnp7HZmZm6p///Kfq1aunyMhISdKYMWM88w8dOqQPPvhAzZs390ybO3eu3nzzTR07dkz16tXTiBEj1KxZM6+Nk4ARAAAAAAAA8IIePXr86vwDBw7ojjvuUH5+voYOHaqEhIQi85cuXarnnntOQUFBSklJkWEU/S7IZ555RitXrlS1atU0cOBASdL333+vKVOm6NVXX1XdunU1d+5cPfXUU/r3v/8th8M735bIdzACAAAAAAAAfhAZGamlS5dq9OjR+sc//qG1a9cWmd+yZUutWLFC9913nx5//HEdPHiwyPy+fftq0aJFqlatmvr27Su3263Dhw/LMAzFx8crISFBTz31lKZOnSq32+21cXAGIwAAAAAAAOAH4eHhatiwoRo2bKi9e/dq/vz56tChg2d+fHy84uPj1aBBA23evFkrV67UE0884Zlft25dSdJLL72k1q1b68svv1SrVq107bXXqnPnzmrYsKHatWune++9VwEB3osBOYMRAAAAAAAA8KHdu3dry5YtRabVqVNHJ06ckCRt3LhR+/bt88wzDEO1a9fWiRMn5HK5tHbtWp058/ONbaKjo1W5cmWdOHFCoaGhWrJkid5++201b95cy5cvV7du3ZSamuq18RAwAgAAAAAAAD706aefauTIkUXuLv3dd9+pdu3akqT/+7//01tvveWZl5+frx9++EF16tSRw+HQs88+q/Xr13vmHzlyRCdOnFCdOnW0detWvfbaa7rppps0fPhw/etf/1JOTo6++uorr42HS6QBAAAAAAAAH+rSpYtee+01TZs2Tffee68+//xzvffee1q0aJGkgpvDPPnkk7rxxhvVqFEjvfnmmzp37pzuuusuBQQEqHv37po+fbqqVKmikJAQjR8/Xu3atVO9evX03//+VzNmzFB0dLRatGihL7/8UllZWapfv77XxkPACAAAAAAAANsyKobZro0qVaooJSVFEydO1Pz581WtWjW98soratSokSSpXbt2Gjt2rF599VX99NNPatq0qebMmaOKFStKkoYMGSLDMPTUU08pKytL7du318iRIyVJDRo00N/+9jfNnDlTzz//vOLj4zV16lTVqVOnVMdwIQJGAAAAAAAA2I4pU6bpVkDDpr5pz3TLlHn5B17Czp07i/zetGlTLV68+JKPv+eee3TPPfdcdF5QUJCeeeYZPfPMMxed/6c//Ul/+tOfLPf1ahEwAgAAAAAAwJZy3bkyZPikrZKEi+UdASMAAAAAAABsi+DP/7iLNAAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAIBtGT76ryRcLpc6deqkTZs2eaZ99tln6tKlixITE9WlSxdt2LChyDJdunRR/fr1i/zbtWuXJCkjI0ODBw/WDTfcoJtvvllTp05VXl5eifpYEgF+a/kCLpdL3bp106hRo5ScnCxJOnjwoEaNGqVt27YpPj5eI0aMUKtWrfzcUwAAAAAAAJQVgY4gGUbJwr8rZZqmct2uq14uJydHQ4cO1e7duz3TDhw4oEGDBunpp59Wu3bt9PHHH2vgwIH617/+pYSEBOXn52v//v2aP3++atas6VkuIiJCkvSXv/xFhmFo0aJFOnnypP7yl78oPDxc/fv3L/E4rfB7wHixP7Jpmho4cKCuvfZaLVu2TB9//LEGDRqk1atXKz4+3o+9BQAAAAAAQFlgyJBhGPr28HFlubx79l6FoAA1rhYpQ4ZMmVe83J49ezR06FCZZtFljh49qvvuu08PP/ywJOmRRx7RrFmz9M033yghIUGHDh1Sbm6uEhMTFRwcXGRZl8ulqKgoPfHEE6pRo4YkqUOHDvrqq69KNsgS8GvAeKk/8saNG3Xw4EEtXLhQFSpUUJ06dfTFF19o2bJleuKJJ/zUWwAAAAAAAJQ1Wa48ZZ7L9Xc3Lmrz5s1KTk7W008/raZNm3qmJycne67izc3N1cqVK+VyuZSYmCipIDOrWrVqsXBRkoKCgjRt2jTP77t379a6det03333eaZNnz5dy5cv1+nTp9WkSRONHj1a9erV89Io/fwdjIV/5EWLFhWZvn37djVs2FAVKlTwTLvhhhu0bds2H/cQAAAAAAAAsKZHjx4aMWKEQkNDLzr/wIEDatKkiUaOHKnHH39cCQkJkqS9e/cqMDBQ/fr1080336wHH3xQ33zzTbHlH3zwQXXq1Enh4eHq2bOnJOmjjz7SokWL9PLLL+uDDz5QdHS0hg8f7r1Bys9nMPbo0eOi09PT0xUbG1tkWlRUlI4ePXrVbeTn51vqmx04nU6ZplnsDFC7cbvdnp8Oh/3vO1RYD28/95xOp0y3KV3Fqdllkdt0e3463Pavv2TKcPio/pLtt3+pfO0DCqvhi/q7TVM6v/3YWcF+rOCn22Hz8ZimnPLNsUfBPsAt0+bPAff5+rvdphw2r7+pgv77rP5ut+S2+d/s/GuYaZq2H0th/31X/5/3n3ZVno4BzfNf/ea7+pue/addFb5+maZbbrvX3+2b93/Sz8eAbpu//ls5/nObV3NRsg+d79TVvC/7ZY4TERGhJUuWaNu2bZo8ebJ+97vfqUOHDtq3b59OnTqle+65R0888YSWLFmihx56SKtWrVLVqlU9yz/33HM6deqUJkyYoCFDhmjWrFk6dOiQAgMDVbVqVcXHx2vkyJH68ccfL9nPwj7l5+cXey5f6XPb79/BeDHZ2dkKCgoqMi0oKEgu19V/keaOHTtKq1tlSmhoqBo2bKiMjAydzM7yd3dKRVpamr+7UCoqh1aQoqtq586dys7O9kobF9Y/N/eMV9rwtbTU8lH/wMAwxcTU8k39jx3T2bPnvNKGP5SHfUDFiiFKqB7hk/ofzzim3BPHvdKGP6Slpfq7CyUWGOFSnOTV+ksX7gOO68QZ77XjS+Vh+48IC5Vqxfiu/hkZyj1zzGvt+FJqajnY/sPyFFvLh9v/8WM6cy7Da+34UnnY/sNCclWrsu/qfywjQ2dPnPVaO76UWg7eA1SMqKjqqu7D/f8xZeeUlwzgKvb/+VJAfojy8nKVm/tzKO0wHAp0Bsmd75Y737vBa+H68/LyPCGvw1HQ/rlz5zwnTlxOTk6OsrJ+rqHT6VTNmjVVs2ZN/fDDD5o7d65at26t4cOH6+mnn1ZYWJgkadiwYdqyZYuWLl2qPn36eJb/3e9+J0kaM2aMHnzwQe3Zs0dt27bV/Pnz9cc//lGJiYlq06aN7rrrriLt/rJPubm5+uGHH67+D3NemQwYg4ODdfLkySLTXC6XQkJCrnpd1113nZxOZyn1rOyJiopSSN41/u5GibjdbqWlpSk2Ntb2Zy9JUsWAQElS/fr1vd5WVFSUpDCvt+NNbtOttNQ0xcbFymHYv/5Swfdj+KT+0dEKD/fuFxn7QnnaBwQFF7ys+qL+kVHRUnDQ5R9YxpluU2lpqYqNjZPh8M3d/7wmrOD12Bf1l6So6EgFh9l7H+B2mxds//auf1iI77Z/6fwxQFiZPJS/YqZpKjU1VXFxcT67+6fXBFeS5MP6R0YrLD/QJ215i9u84PXf5seAwU7f1j86KkrhweE+actbTNOt1NQ0xcXFyrB7/cMKjsd8t/+PtnQX47LEyvFfXk6+Mo9mKSAgUIGBP+//DBUs73A65HB697lUuP6AgADPTV4K27+avCo4OFgVKlTQ7t27derUKTVr1swz7/e//722bt3q+crAa64pmvfUrVtXJ06ckNvt1r///W/dfvvtnvdQjRo1klRw0l7dunW1Zs0aff7551q/fr3mzZunlStXasWKFRe9VNvhcCgwMFB169YtNpb8/PwrOnmvTB6VxMXFac+ePUWmHTt2rNhl01fC6XSW64DRMAzbH5AVbgwOh8P2Y5HkGYMvnncFO2N7/80KL4lxGA77hwuSCuvhk/pL5WKbKU/7gMLe+6L+DsOQbH5ALslzWYzhMGz/BlM+3P9LkiGH7d+UFV4W7XAYth+Lcf6rzX1Wf4dDsvmHMoWXFRuGUTAeO3P4uv6SYdr7NbM8HQMW7r58V3/D9h/KFF4WbRgO24+l8Pnrq/o7DPsfM1k5/nMY7rL5zvd8p67mfUxhjrN+/XotX75ca9as8Sz/3XffqXbt2jIMQ7169VJycrIGDRokqeDEjJ07d6pnz546d+6chgwZovj4eCUlJUmSvv/+ezmdTtWuXVsbNmzQkSNH1KNHD916660aNGiQWrVqpd27d6tJkyaX7FNJMrQy+axs0qSJvvvuO5079/Olf1999dVF/wgAAAAAAACAnXTp0kXp6emaNm2a9u/frwULFui9995Tv379JElt27bVW2+9pU8++UT79u3T888/r8zMTHXt2lUxMTFq3769xo8fr++//15btmzRc889pwcffFBhYWFyu92aMmWKPvroIx06dEjLly9XaGioatas6bXxlMkzGJs3b66qVatq+PDhevzxx/Xpp5/qm2++0aRJk/zdNQAAAAAAAJQhFYK8H2+VdhtVqlRRSkqKJk6cqPnz56tatWp65ZVXPJc6P/zww8rJydGECRN07NgxNWnSRG+++abnOxknTpyoiRMn6pFHHpEk3XXXXRo6dKikgnBy8ODBmjRpktLT01W7dm3NnDlTlSpVKtUxXKhMBoxOp1MzZ87Uc889p27duqlGjRqaMWOG4uPj/d01AAAAAAAAlAGmCu5+3LhapG/aM02V5H7WO3fuLPJ706ZNtXjx4os+1jAM9e/fX/3797/o/PDw8F89Ea93797q3bu35b5erTITMP7yj1yjRg3Nnz/fT70BAAAAAABAWZfrdnlutuJtJQkXy7syEzACAAAAAAAAV4vgz//K5E1eAAAAAAAAANgDASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAALAtw0f/lYTL5VKnTp20adOmYvMyMzPVunVrLV++3DPNNE29/vrratu2ra6//no99NBD2rNnz0XXPW7cOPXq1atE/SspAkYAAAAAAADYUqAjUIHOIN/8cwRa6mNOTo6GDBmi3bt3X3T+1KlTlZaWVmTawoULNWfOHI0aNUrLli1TQkKC+vbtq+zs7CKP+/rrr/XOO+9Y6ldpCvB3BwAAAAAAAICrZciQYTiUf2SzzJxM77YVHC5nfHMZMmTKvOLl9uzZo6FDh8o0L77Mli1btHHjRsXExBSZvmLFCvXu3Vu33nqrJGns2LFq3ry5vv76a918882SCs6KHD16tJo2bWptUKWIMxgBAAAAAABgW2ZOppRz0qv/rAaYmzdvVnJyshYtWlRsnsvl0qhRozR69GgFBQUVmffXv/5VXbp08fxuGIZM01Rm5s/9eP3111W/fn1P4FgoNzdXI0eOVHJyspKSktS/f3+lpqZa6v+VImAEAAAAAAAAvKBHjx4aMWKEQkNDi82bPXu2GjZsqFatWhWb16xZM1WpUsXz+5IlS5SXl6cbbrhBkrR371698847Gj58eLFlFyxYoC+//FJz5szR0qVLdfbsWU2cOLEUR1Ucl0gDAAAAAAAAPrRnzx4tXLhQ77333mUfu337dr3wwgvq06ePYmJiZJqmRo8erSeeeELR0dHFHn/o0CEFBwerWrVqqly5siZPnqyTJ096YRQ/4wxGAAAAAAAAwEdM09TIkSM1ePDgiwaEF9q6dav69OmjP/zhD3ryySclSYsWLVJ+fr66d+9+0WW6d++u9PR0tWrVSr1799aGDRtUp06dUh/HhTiDEQAAAAAAAPCRI0eOaOvWrdq5c6deeOEFSVJ2drbGjBmj1atX64033pAkbdq0Sf3799fNN9+sF198UQ5HwXmCq1at0rfffqvrr79eUsF3Lubn5yspKUmrVq1SvXr1tG7dOq1fv17r16/X9OnT9cEHH2jBggUyDMMrYyJgBAAAAAAAAHwkLi5OH374YZFpvXr1Uq9evTw3dtm1a5cGDBig1q1ba/r06QoI+DnCmzZtms6dO+f5fd68edq+fbumTZum2NhYrVy5UkFBQerYsaPuuOMObdu2Td27d1dGRsZlz5i0ioARAAAAAAAA8JGAgADVqFGj2LSoqCjFxcVJkkaPHq2qVatq+PDhOnHihOdx4eHhnscUqlSpkkJCQjzrzMzM1OzZsxUREaGEhAS9//77qlKliiIiIrw3Jq+tGQAAAAAAAPAyIzhcpg/a8JX09HRt3bpVktSmTZsi8yZNmqRu3br96vI9e/bU0aNHNWzYMJ06dUqNGzfWrFmz5HQ6vdVlAkYAAAAAAADYjylTpumWM765b9oz3TJLEGXu3LnzkvPWrVvn+f+YmJhffewvPfHEE0V+dzgcGjZsmIYNG3b1nbSIgBEAAAAAAAC2lOvOlSHv3Ljkl0oSLpZ3BIwAAAAAAACwLYI//3P4uwMAAAAAAAAA7IuAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAA2Jbho/9KwuVyqVOnTtq0aVOxeZmZmWrdurWWL19+0WXXrFmj+vXrX/V6fSnAr60DAAAAAAAAFgU6AmUYvjl/zjTdynXnXvVyOTk5Gjp0qHbv3n3R+VOnTlVaWtpF550+fVp/+9vfLK3XlwgYAQAAAAAAYDuGDBmGQ4cyv5IrP9OrbQU5w5UQfoMMGTJlXvFye/bs0dChQ2WaF19my5Yt2rhxo2JiYi46f8qUKapevbrS09Ovar2+xiXSAAAAAAAAsC1XfqbO5Z/y6j+rAebmzZuVnJysRYsWFe+3y6VRo0Zp9OjRCgoKuuiymzdvVv/+/a9qvbm5uRo5cqSSk5OVlJSk/v37KzU11VL/rxRnMAIAAAAAAABe0KNHj0vOmz17tho2bKhWrVoVm3dh+BgYGHhV612wYIG+/PJLzZkzRyEhIRo7dqwmTpyoV155xdogrgABIwAAAAAAAOBDe/bs0cKFC/Xee+9ddP6MGTPUqFEjtWrV6qpv4HLo0CEFBwerWrVqqly5siZPnqyTJ0+WQq8vjUukAQAAAAAAAB8xTVMjR47U4MGDFR0dXWz+rl27tHjxYo0YMcLS+rt376709HS1atVKvXv31oYNG1SnTp2SdvtXcQYjAAAAAAAA4CNHjhzR1q1btXPnTr3wwguSpOzsbI0ZM0arV69W06ZNderUKd12222SpPz8fElSUlKSxo0bpy5duvzq+uvVq6d169Zp/fr1Wr9+vaZPn64PPvhACxYskGEYXhkTASMAAAAAAADgI3Fxcfrwww+LTOvVq5d69eqlLl26KDg4WJ07d/bM2759u4YNG6aVK1cqKirqsutfuXKlgoKC1LFjR91xxx3atm2bunfvroyMjIueMVkaCBgBAAAAAAAAHwkICFCNGjWKTYuKilJcXJwkqXLlyp55R48elaRiy1xKZmamZs+erYiICCUkJOj9999XlSpVFBERUToDuAgCRgAAAAAAANhWkDO8XLRRWnr27KmjR49q2LBhOnXqlBo3bqxZs2bJ6XR6rU0CRgAAAAAAANiOKVOm6VZC+A2+ac90y5RpefmdO3dect66desuOS85OflXl/3lPIfDoWHDhmnYsGFX30mLCBgBAAAAAABgS7nuXBnyzo1Lfqkk4WJ5R8AIAAAAAAAA2yL48z+HvzsAAAAAAAAAwL4IGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAgG0ZPvqvJFwulzp16qRNmzYVm5eZmanWrVtr+fLlRab/61//UocOHdS0aVP17t1bhw8fLrK+cePG6cYbb1TLli01ffp0maZZoj6WBAEjAAAAAAAAbCnQEaRAp4/+OYIs9TEnJ0dDhgzR7t27Lzp/6tSpSktLKzLt66+/1tChQ/XII49o+fLlCgoK0pAhQzzzJ0yYoP/85z9KSUnRiy++qMWLF2vRokWW+lcaAvzWMgAAAAAAAGCRIUOGYejo90flOuvyaltBFYNUpWEVGTJk6srPFNyzZ4+GDh16ybMLt2zZoo0bNyomJqbI9Dlz5qhLly66//77JUnPPfecHnroIR0/flwOh0PLli3Tm2++qcTERElS7969tX37ds/jfY2AEQAAAAAAALblOutSzpkcf3fjojZv3qzk5GQ9/fTTatq0aZF5LpdLo0aN0ujRozV69Ohiy02ePNnze/Xq1bVu3TpJ0ieffKKwsDA1b97cM/+xxx7z/P/p06f13HPP6YsvvpBhGLrllls0duxYhYWFeWGEBbhEGgAAAAAAAPCCHj16aMSIEQoNDS02b/bs2WrYsKFatWpVZPrp06d16tQp5efnq0+fPrr55ps1YMAApaamSpIOHjyoatWqaeXKlbr99tvVrl07zZgxQ263W5L097//Xenp6XrnnXc0d+5c/fDDD5o5c6ZXx0nACAAAAAAAAPjQnj17tHDhQg0fPrzYvKysLEkF37PYuXNnzZo1Sy6XS/369ZPb7VZWVpYOHDighQsXatKkSXrmmWc0b948vfXWW5Kkw4cPq2LFikpISFCDBg30yiuv6O677/bqeMp0wPjTTz+pX79+uv7669W2bVvPHwoAAAAAAACwI9M0NXLkSA0ePFjR0dHF5judTknSvffeq7vuukuJiYmaNm2adu3apW3btikgIEBnzpzRiy++qKSkJLVv3179+/f33OTlz3/+s77++mu1aNFCAwYM0I4dO1SzZk2vjqlMB4xPPfWUKlSooOXLl2vEiBF6+eWX9dFHH/m7WwAAAAAAAIAlR44c0datW/XCCy8oKSlJSUlJOnLkiMaMGaNHH31UERERCgwMVO3atT3LREREqHLlyjp69KhiYmIUHBysatWqeebXqlVLP/30kySpRYsW2rBhg8aMGaOgoCCNHj1azzzzjFfHVGZv8nLq1Clt27ZN48ePV82aNVWzZk21bt1aX3zxhW677TZ/dw8AAAAAAAC4anFxcfrwww+LTOvVq5d69eqlLl26KCAgQI0aNdIPP/ygjh07SpKOHz+uEydOqFq1agoPD1dOTo5+/PFH1apVS5K0b98+T+D41ltvqX79+uratau6du2qVatWXfRS7NJUZs9gDAkJUWhoqJYvX67c3Fzt27dPX3/9tRo0aODvrgEAAAAAAACWBAQEqEaNGkX+BQQEKCoqSnFxcZKkRx55RPPmzdOaNWu0d+9ejRgxQg0aNFBiYqJq166tNm3aaPjw4frhhx/02Wef6fXXX9cDDzwgSTp69Kief/55bdu2Tfv379fatWvVsGFD747Jq2svgeDgYI0ePVrjx4/X3LlzlZ+fr27duunee++9qvXk5+d7qYf+53Q6ZZqmTNP0d1dKpPAuR263Ww5Hmc28r1hhPbz93HM6nTLdpiSb1990e3463Pavv2TKcPio/pLtt3+pfO0DCqvhi/q7TVM6v/3YWcF+rOCn22Hz8ZimnPLNsUfBPsAt0+bPAff5+rvdphw2r7+pgv77rP5ut+S2+d/s/GuYaZq2H0th/31X/5/3n3ZVno4BTaPgp+/qb3r2n3ZV+Pplmm657V5/t2/e/0k/HwO6bf76b+X4z22av/rON6hiUCn07NddtI3znbqa92WXynEKpxfO69Chg06dOqUpU6bo+PHjat68uWbMmOF57NSpUzVhwgQ98MADCg0NVc+ePfXggw/KNE0NHjxYmZmZGjBggLKysnTjjTdq6tSpl+xnYbv5+fnFnstX+tw2zDL87nTq1Kn66aef9Mgjj2j37t0aP368xo0bpy5dulx22fz8fG3bts37nfST0NBQNWzYUJ/s/FYns7P83R1coHJoBbWr31jff/+9srOzvdJGYf3T07coN/eMV9qANYGBYYqJaeaT+m/fultnz57zShuwpmLFEDVJqueT+qf+6z3lnjjulTZgTWBEpOJu7+LV+ks/Pwf+9eVOnTjjvXZwdSLCQnX7jfV9Vv+0LUuUe+aY19rB1QkMi1Zss3t9Vv8t+5brzLkMr7WDqxMWEqVmtbv5rP5b/7VNZ0+c9Vo7uDoVIyoq6famPqv/9we/UXbObzADyJcCckJUvUZ1BQcHeyYbMhQaXEGGYfikG6ZpKjsnS4Vxp8PhUGhQBWVnZ3tOnLCjnJwcHTx4UHl5eZd8TNOmTT03n7mYMnsG4xdffKGlS5dqw4YNCgkJ0XXXXafU1FTNmjXrigLGQtddd92v/gHsLioqSiF51/i7GyXidruVlpam2NhY25+9JEkVAwIlSfXr1/d6W1FRUZLCvN6ON7lNt9JS0xQbFyuHYf/6SwUvdj6pf3S0wsMv/QJgF+VpHxAUXPCy6ov6R0ZFS8He/6TW20y3qbS0VMXGxslw+ObA0GvCCl6PfVF/SYqKjlRwmL33AW63ecH2b+/6h4X4bvuXzh8DhJXZQ/krYpqmUlNTFRcX57M3hl4TXEmSD+sfGa2w/ECftOUtbvOC13+bHwMGO31b/+ioKIUHh/ukLW8xTbdSU9MUFxcrw+71Dys4HvPd/j9auW6XT9ryFivHf3k5+co8mqWAgEAFBhbd/+W6XTLko4BRpgICf379LWw3JCTEJ+17i8PhUGBgoOrWrVtsLPn5+dqxY8dl11Fmj0q+/fZb1ahRo8jAGjZsqNmzZ1/VepxOZ7kOGA3DsP0BWWGg4HA4bD8WSZ4x+OJ5V7AztvffrPCSGIfhsH+4IKmwHj6pv1QutpnytA8o7L0v6u8wDMnmB+SSPJfFGA7D9m8w5cP9vyQZctj+TVnhZdEOh2H7sRjnv9rcZ/V3OCSbfyhTeFmxYRgF47Ezh6/rLxmmvV8zy9MxYOHuy3f1N2z/oUzhZdGG4bD9WAqfv76qv8Ow/zGTleM/h+H+1Xe+v34BtRed75Tt38ecz5ZKkqGV2WdlbGysDhw4IJfr52R+3759SkhI8GOvAAAAAAAAAFyozAaMbdu2VWBgoEaOHKkff/xR69at0+zZs9WrVy9/dw0AAAAAAADAeWX2Eunw8HC99dZb+tvf/qZ77rlHkZGRGjBggLp37+7vrgEAAAAAAAA4r8wGjJJUt25dvfnmm/7uBgAAAAAAAIBLKLOXSAMAAAAAAAAo+wgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAA2Jbho/9KwuVyqVOnTtq0aVOxeZmZmWrdurWWL1/umVa/fv2L/lu5cqUkKSMjQ4MHD1azZs102223FVnWH8r0TV4AAAAAAACASwl0BMkwShb+XSnTNJXrdl31cjk5ORo6dKh279590flTp05VWlpakWn/7//9vyK/v/XWW1qzZo3atWsn0zQ1cOBAud1uzZ07V6mpqXrmmWcUFham9u3bX3X/SgMBIwAAAAAAAGzHkCHDMJRxLs1S8Hc1Ah1BigqJlSFDpswrXm7Pnj0aOnSoTPPiy2zZskUbN25UTExMkekX/n7w4EHNmzdPs2fPVnh4uHbs2KGtW7fq448/VvXq1dWwYUM9+uijSklJ8VvAyCXSAAAAAAAAsK1ct8sn/6zYvHmzkpOTtWjRomLzXC6XRo0apdGjRysoKOiS6/j73/+uFi1aqGXLlpIKAsfIyEhVr17d85j69evr22+/VW5urnJzczVy5EglJycrKSlJ/fv3V2pqqqX+XynOYAQAAAAAAAC8oEePHpecN3v2bDVs2FCtWrW65GOOHDmiDz74QAsXLvRMi46OVmZmprKzsxUaGipJOnr0qPLy8pSZman33ntPX375pebMmaOQkBCNHTtWEydO1CuvvFJ6A/sFAkYAAAAAAADAh/bs2aOFCxfqvffe+9XHLV26VI0bN1aTJk0805o0aaLY2FiNHz9eI0eOVHp6ut58801JUm5urg4dOqTg4GBVq1ZNlStX1uTJk3Xy5ElvDodLpAEAAAAAAABfMU1TI0eO1ODBgxUdHf2rj127dq26dOlSZFpwcLBefvllbdy4UTfccIN69uyp+++/X5IUFham7t27Kz09Xa1atVLv3r21YcMG1alTx2vjkTiDEQAAAAAAAPCZI0eOaOvWrdq5c6deeOEFSVJ2drbGjBmj1atX64033pAk/fTTT9qzZ4/atWtXbB2JiYlat26d0tPTFRERoc8//1wRERGqWLGi6tWrp3Xr1mn9+vVav369pk+frg8++EALFizw2h23CRgBAAAAAAAAH4mLi9OHH35YZFqvXr3Uq1evImcrbt++XVWrVlV8fHyRx548eVIDBgzQzJkzPXebXr9+vZo3by5JWrlypYKCgtSxY0fdcccd2rZtm7p3766MjIzLnjFpFQEjAAAAAAAA4CMBAQGqUaNGsWlRUVGKi4vzTNu9e/dFL22uXLmysrKyNHXqVA0YMEAbN27UsmXLNH/+fElSZmamZs+erYiICCUkJOj9999XlSpVFBER4b0xeW3NAAAAAAAAgJcFOoLKRRu/dOzYMVWqVOmi81566SWNGTNGnTt3VkJCgl555RUlJiZKknr27KmjR49q2LBhOnXqlBo3bqxZs2bJ6XR6ra8EjAAAAAAAALAdU6ZM01RUSKxv2jNNmTItL79z585Lzlu3bl2xaePGjbvk42vXrq158+ZddJ7D4dCwYcM0bNiwq++kRQSMAAAAAAAAsKVct0uGvHPjkl8qSbhY3jlKe4XHjx8v7VUCAAAAAAAAF2X66D9cmqWAsUGDBhcNEg8fPnzRW2cDAAAAAAAAKJ+u+BLplStXavny5ZIKrjkfOHCgAgMDizwmLS3Nc3tsAAAAAAAAAOXfFQeMt912mw4dOiRJ2rx5s5o2baqKFSsWeUyFChV02223lW4PAQAAAAAA8NtlqOACZZPLlL3BLIW/6xUHjBUrVtSgQYMkSdWqVVPHjh0VHBxc4g4AAAAAAAAAl+JwOiSZys7OVkhoiL+7U+5kZWVJUrErla+GpbtId+3aVQcOHNC3336r3NzcYvPvuusuyx0CAAAAAAAACjmcDgWFBSo9/ZgkKTQ0VDJ8c+foX2MYUr7D7e9uWGaaprKyspSWlqbKlSvL6XRaXpelgPGNN97QtGnTVKlSpWKXSRuGQcAIAAAAAACAUhMWVUFnVBCGSYb8Hy9KMgw5DeuhXFlRuXJlValSpUTrsBQwzpkzR8OGDVOfPn1K1DgAAAAAAABwOYZhKDy6otwRbrnz3ee/lNG/AhwBigyJ9Xc3SiQwMLBEZy4WshQw5uTkqH379iVuHAAAAAAAALhSDqfj/Hcy+l+gI1AhIXwnpCRZqkjnzp31z3/+s1TuMgMAAAAAAADAviydwXjmzBktXbpUH3zwgRISEordZWbu3Lml0jkAAAAAAAAAZZulgLFmzZrq379/afcFAAAAAAAAgM1YChgHDRpU2v0AAAAAAAAAYEOWAsbhw4f/6vxJkyZZ6gwAAAAAAAAAeymV2+7k5eXpxx9/1OrVqxUZGVkaqwQAAAAAAABgA5bOYLzUGYpvvPGGdu3aVaIOAQAAAAAAALCPUjmDsdDtt9+ujz76qDRXCQAAAAAAAKAMK7WAMSsrS4sXL1ZERERprRIAAAAAAABAGWfpEunf//73Mgyj2PTg4GBNmDChxJ0CAAAAAAAAYA+WAsa5c+cW+d0wDAUGBqpu3boKCwsrlY4BAAAAAAAAKPssBYzNmzeXJO3fv1979+6V2+1WrVq1CBcBAAAAAACA3xhLAePp06c1fPhwffLJJ6pUqZLy8/N19uxZ3XjjjZoxY4bCw8NLu58AAAAAAAAAyiBLN3mZMGGCjh49qtWrV2vTpk3asmWL3n//fWVlZWnSpEml3UcAAAAAAAAAZZSlgHHdunUaO3asateu7ZlWt25djR49Wp988kmpdQ4AAAAAAABA2WYpYAwODpbDUXxRwzCUn59f4k4BAAAAAAAAsAdLAWPbtm01btw4/e9///NM279/vyZMmKBbbrml1DoHAAAAAAAAoGyzdJOXYcOGaeDAgerQoYOuueYaSdKpU6f0hz/8QaNGjSrVDgIAAAAAAAAou646YDxw4IDi4+M1b9487dy5U3v37lVwcLBq1qypOnXqeKOPAAAAAAAAAMqoK75E2jRNTZgwQXfccYe2bt0qSapfv746duyoZcuWqVOnTpo8ebJM0/RaZwEAAAAAAACULVccMM6dO1erV6/WjBkz1Lx58yLzZs6cqRkzZmjFihV65513Sr2TAAAAAAAAAMqmKw4YFy9erFGjRunWW2+96Py2bdvqL3/5CwEjAAAAAAAA8BtyxQHj4cOHlZiY+KuPuemmm3Tw4MESdwoAAAAAAACAPVxxwBgVFaXDhw//6mOOHj2qypUrl7RPAAAAAAAAAGziigPG2267Tf/4xz+Um5t70fl5eXl69dVX1apVq1LrHAAAAAAAAICyLeBKH/j444/rnnvuUbdu3dSrVy81btxY4eHhOnXqlL777jvNnz9fZ8+e1ZQpU7zZXwAAAAAAAABlyBUHjNdcc40WL16sadOmafLkycrOzpYkmaap8PBwdezYUU888YSio6O91lkAAAAAAAAAZcsVB4ySVLlyZU2YMEGjR4/WwYMHdfr0aVWuXFm/+93v5HQ6vdVHAAAAAAAAAGXUVQWMhYKCglSnTp3S7gsAAAAAAAAAm7nim7wAAAAAAAAAwC+V6YDR5XJp3LhxuvHGG9WyZUtNnz5dpmn6u1sAAAAAAAAAzrN0ibSvTJgwQZs2bVJKSorOnj2rp59+WvHx8br//vv93TUAAAAAAAAAKsNnMJ48eVLLli3T+PHjlZiYqBYtWqh3797avn27v7sGAAAAAAAA4LwyewbjV199pbCwMDVv3twz7bHHHvNjjwAAAAAAAAD8Upk9g/HgwYOqVq2aVq5cqdtvv13t2rXTjBkz5Ha7/d01AAAAAAAAAOeV2TMYs7KydODAAS1cuFCTJk1Senq6Ro8erdDQUPXu3fuK15Ofn+/FXvqX0+mUaZq2v/FNYWjsdrvlcJTZzPuKFdbD2889p9Mp021Ksnn9Tbfnp8Nt//pLpgyHj+ov2X77l8rXPqCwGr6ov9s0JdP+H7oV7McKfrodNh+Pacop3xx7FOwD3DJt/hxwn6+/223KYfP6myrov8/q73ZLNv/gvfA1zDRN24+lsP++q//P+0+7Kk/HgKZR8NN39Tc9+0+7Knz9Mk233Havv9s37/+kn48B3TZ//S9Px39uH73/96crHVuZDRgDAgJ05swZvfjii6pWrZok6ciRI3rnnXeuKmDcsWOHt7roV6GhoWrYsKEyMjJ0MjvL390pFWlpaf7uQqmoHFpBiq6qnTt3Kjs72yttXFj/3NwzXmnD19JSy0f9AwPDFBNTyzf1P3ZMZ8+e80ob/lAe9gEVK4YooXqET+p/POOYck8c90ob/pCWlurvLpRYYIRLcZJX6y9duA84rhNnvNeOL5WH7T8iLFSqFeO7+mdkKPfMMa+140upqeVg+w/LU2wtH27/x4/pzLkMr7XjS+Vh+w8LyVWtyr6r/7GMDJ09cdZr7fhSajl4D1AxoqKqq7oP9//HlJ1TXjIA++//Q4MrKK5CvNfrbwdlNmCMiYlRcHCwJ1yUpFq1aumnn366qvVcd911cjqdpd29MiMqKkohedf4uxsl4na7lZaWptjYWNufvSRJFQMCJUn169f3eltRUVGSwrzejje5TbfSUtMUGxcrh2H/+kvBknxU/+hohYfneb0dbytP+4Cg4IKXVV/UPzIqWgoO8no73ma6TaWlpSo2Nk6Gw/B3d0omrOD12Bf1l6So6EgFh9l7H+B2mxds//auf1iI77Z/6fwxQFiZPZS/IqZpKjU1VXFxcTIMe9dfwZUk+bD+kdEKyw/0SVve4jYveP23+TFgsNO39Y+OilJ4cLhP2vIW03QrNTVNcXGxMuxe/7CC4zHf7f+jlet2+aQtbylPx3+BDt/W3x/y8/Ov6OS9MntU0qRJE+Xk5OjHH39UrVq1JEn79u0rEjheCafTWa4DRsMwbH9AVhgoOBwO249FkmcMvnjeFeyM7f03K7wkxmE4bP/iUsCH9ZfKxTZTnvYBhb33Rf0dhiHZ/IBckueyGMNh2P4Npny4/5ckQw7bvykrvCza4TBsPxbj/Feb+6z+Dodk8w9lCi8rNgyjYDx25vB1/SXDtPdrZnk6Bizcffmu/obtP5QpvCzaMBy2H0vh89dX9XcY9j9mKk/Hfw4fH/+VZWW2krVr11abNm00fPhw/fDDD/rss8/0+uuv64EHHvB31wAAAAAAAACcV2bPYJSkadOmafz48XrggQcUGhqqnj17qlevXv7uFgAAAAAAAIDzynTAGB4erilTpvi7GwAAAAAAAAAuocxeIg0AAAAAAACg7CNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGW2CRgfe+wxPfvss/7uBgAAAAAAAIAL2CJgXLVqlTZs2ODvbgAAAAAAAAD4hTIfMJ48eVJTpkzRdddd5++uAAAAAAAAAPiFAH934HJeeOEF/elPf1JaWpq/uwIAAAAAAADgF8p0wPjFF19oy5Ytev/99zV27FhL68jPzy/dTpUhTqdTpmnKNE1/d6VE3G6356fDUeZPqr2swnp4+7nndDpluk1JNq+/6fb8dLjtX3/JlOHwUf0l22//UvnaBxRWwxf1d5umdH77sbOC/VjBT7fD5uMxTTnlm2OPgn2AW6bNnwPu8/V3u005bF5/UwX991n93W7JbfO/2fnXMNM0bT+Wwv77rv4/7z/tqjwdA5pGwU/f1d/07D/tqvD1yzTdctu9/m7fvP+Tfj4GdNv89b88Hf+5ffT+35+udGxlNmDMycnRmDFjNHr0aIWEhFhez44dO0qxV2VHaGioGjZsqIyMDJ3MzvJ3d0pFeTlLtXJoBSm6qnbu3Kns7GyvtHFh/XNzz3ilDV9LSy0f9Q8MDFNMTC3f1P/YMZ09e84rbfhDedgHVKwYooTqET6p//GMY8o9cdwrbfhDWlqqv7tQYoERLsVJXq2/dOE+4LhOnPFeO75UHrb/iLBQqVaM7+qfkaHcM8e81o4vpaaWg+0/LE+xtXy4/R8/pjPnMrzWji+Vh+0/LCRXtSr7rv7HMjJ09sRZr7XjS6nl4D1AxYiKqq7qPtz/H1N2TnnJAOy//w8NrqC4CvFer78dlNmA8dVXX1Xjxo3VunXrEq3nuuuuk9PpLKVelT1RUVEKybvG390oEbfbrbS0NMXGxtr+7CVJqhgQKEmqX7++19uKioqSFOb1drzJbbqVlpqm2LhYOQz7118KluSj+kdHKzw8z+vteFt52gcEBRe8rPqi/pFR0VJwkNfb8TbTbSotLVWxsXEyHIa/u1MyYQWvx76ovyRFRUcqOMze+wC327xg+7d3/cNCfLf9S+ePAcLK7KH8FTFNU6mpqYqLi5Nh2Lv+Cq4kyYf1j4xWWH6gT9ryFrd5weu/zY8Bg52+rX90VJTCg8N90pa3mKZbqalpiouLlWH3+ocVHI/5bv8frVy3yydteUt5Ov4LdPi2/v6Qn59/RSfvldmjklWrVunYsWNKSkqSJLlcBRvQ2rVrtXXr1itej9PpLNcBo2EYtj8gKwwUHA6H7cciyTMGXzzvCnbG9v6bFV4S4zActn9xKeDD+kvlYpspT/uAwt77ov4Ow5BsfkAuyXNZjOEwbP8GUz7c/0uSIYft35QVXhbtcBi2H4tx/t6JPqu/wyHZ/EOZwsuKDcMoGI+dOXxdf8kw7f2aWZ6OAQt3X76rv2H7D2UKL4s2DIftx1L4/PVV/R2G/Y+ZytPxn8PHx39lWZkNGOfNm6e8vJ8/lZ82bZok6S9/+Yu/ugQAAAAAAADgF8pswFitWrUiv1esWFGSVKNGDX90BwAAAAAAAMBF2PtcVAAAAAAAAAB+VWbPYPylyZMn+7sLAAAAAAAAAH6BMxgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMvKdMCYmpqqwYMHq3nz5mrdurUmTZqknJwcf3cLAAAAAAAAwHkB/u7ApZimqcGDB+uaa67RggULdOrUKY0YMUIOh0PPPPOMv7sHAAAAAAAAQGX4DMZ9+/Zp27ZtmjRpkurVq6dmzZpp8ODB+uCDD/zdNQAAAAAAAADnldmAMSYmRm+88Yaio6OLTD9z5oyfegQAAAAAAADgl8rsJdLXXHONWrdu7fnd7XZr/vz5uummm65qPfn5+aXdtTLD6XTKNE2ZpunvrpSI2+32/HQ4ymzmfcUK6+Ht557T6ZTpNiXZvP6m2/PT4bZ//SVThsNH9Zdsv/1L5WsfUFgNX9TfbZrS+e3Hzgr2YwU/3Q6bj8c05ZRvjj0K9gFumTZ/DrjP19/tNuWwef1NFfTfZ/V3uyW3zf9m51/DTNO0/VgK+++7+v+8/7Sr8nQMaBoFP31Xf9Oz/7Srwtcv03TLbff6u33z/k/6+RjQbfPX//J0/Of20ft/f7rSsZXZgPGXpk6dqu+//15Lly69quV27NjhpR75V2hoqBo2bKiMjAydzM7yd3dKRVpamr+7UCoqh1aQoqtq586dys7O9kobF9Y/N7d8nNWbllo+6h8YGKaYmFq+qf+xYzp79pxX2vCH8rAPqFgxRAnVI3xS/+MZx5R74rhX2vCHtLRUf3ehxAIjXIqTvFp/6cJ9wHGdOOO9dnypPGz/EWGhUq0Y39U/I0O5Z455rR1fSk0tB9t/WJ5ia/lw+z9+TGfOZXitHV8qD9t/WEiualX2Xf2PZWTo7ImzXmvHl1LLwXuAihEVVV3Vfbj/P6bsnPKSAdh//x8aXEFxFeK9Xn87sEXAOHXqVL399tt66aWXdO21117Vstddd52cTqeXeuZ/UVFRCsm7xt/dKBG32620tDTFxsba/uwlSaoYEChJql+/vtfbioqKkhTm9Xa8yW26lZaapti4WDkM+9dfCpbko/pHRys8PM/r7XhbedoHBAUXvKz6ov6RUdFScJDX2/E2020qLS1VsbFxMhyGv7tTMmEFr8e+qL8kRUVHKjjM3vsAt9u8YPu3d/3DQny3/UvnjwHCbHEof0mmaSo1NVVxcXEyDHvXX8GVJPmw/pHRCssP9Elb3uI2L3j9t/kxYLDTt/WPjopSeHC4T9ryFtN0KzU1TXFxsTLsXv+wguMx3+3/o5XrdvmkLW8pT8d/gQ7f1t8f8vPzr+jkvTJ/VDJ+/Hi98847mjp1qjp06HDVyzudznIdMBqGYfsDssJAweFw2H4skjxj8MXzrmBnbO+/WeElMQ7DYfsXlwI+rL9ULraZ8rQPKOy9L+rvMAzJ5gfkkjyXxRgOw/ZvMOXD/b8kGXLY/k1Z4WXRDodh+7EY57/a3Gf1dzgkm38oU3hZsWEYBeOxM4ev6y8Zpr1fM8vTMWDh7st39Tds/6FM4WXRhuGw/VgKn7++qr/DsP8xU3k6/nP4+PivLCvTAeOrr76qhQsXavr06br99tv93R0AAAAAAAAAv1BmA8a9e/dq5syZeuyxx3TDDTcoPT3dMy8mJsaPPQMAAAAAAABQqMwGjJ988ony8/M1a9YszZo1q8i8nTt3+qlXAAAAAAAAAC5UZgPGxx57TI899pi/uwEAAAAAAADgV9j72zQBAAAAAAAA+BUBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwjYAQAAAAAAABgGQEjAAAAAAAAAMsIGAEAAAAAAABYRsAIAAAAAAAAwDICRgAAAAAAAACWETACAAAAAAAAsIyAEQAAAAAAAIBlBIwAAAAAAAAALCNgBAAAAAAAAGAZASMAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAAAAAAMAyAkYAAAAAAAAAlhEwAgAAAAAAALCMgBEAAAAAAACAZQSMAAAAAAAAACwr0wFjTk6ORowYoWbNmqlVq1aaM2eOv7sEAAAAAAAA4AIB/u7Ar5kyZYq+/fZbvf322zpy5IieeeYZxcfH6/bbb/d31wAAAAAAAACoDAeMWVlZWrJkif7v//5PjRo1UqNGjbR7924tWLCAgBEAAAAAAAAoI8rsJdI//PCD8vLylJSU5Jl2ww03aPv27XK73X7sGQAAAAAAAIBCZfYMxvT0dEVERCgoKMgzLTo6Wjk5OTp58qQiIyN/dXnTNCVJLpdLTqfTq331F6fTqRDDIbdRZnPiK2JKqhlXRYbhlGH4uzclF2I4lJ+fr/z8fK+243Q65XaHSrL389s0pcjImsrLKx/1l4LkcPim/hUqBCgo2N7bv1Swv65doZocTocMmz8JApy+2/7zqv1Opsvl1XZ8w1RkjbrKdzqUL3vX3wgKknxQf6ngOVAjIli5ZtDlH1yWmVLd6BA5nQGyefkVaBg+2f6l88cAkQ1l5ud5vS1vMiVFxuYrz+G0e/llOANk+rD+0UHXyW16vy2vMk3F/S5fTodTdj8IdBhOn27/EfUiZebb/6SbGHd0Qf1tzvDR8Z9UUP9wo7JMp+n1trzJlFS5apQcznKw/5fvXv/9pXBshTnbpZTZgDE7O7tIuCjJ87vrCt5QFZ7l+P3335d+5+AV5vl/dndG0jYd9Hc34FeH/N0BAP5y5Ki/ewA/+p+/OwA/4/gPAFB+Xe5q4jIbMAYHBxcLEgt/DwkJuezyAQEBuu666+Rw2P+MGAAAAAAAAMDXTNOU2+1WQMCvR4hlNmCMi4vTiRMnlJeX5xlEenq6QkJCdM0111x2eYfDUewMSAAAAAAAAAClq8x+eVeDBg0UEBCgbdu2eaZ99dVXnrMSAQAAAAAAAPhfmU3qQkNDddddd2ns2LH65ptv9PHHH2vOnDn685//7O+uAQAAAAAAADjPMC93Gxg/ys7O1tixY/Xhhx8qLCxMffr00cMPP+zvbgEAAAAAAAA4r0wHjAAAAAAAAADKtjJ7iTQAAAAAAACAso+AEQAAAAAAAIBlBIwAAAAAAAAALCNgRKlxuVzq1KmTNm3a5Jm2bds23X///UpKSlKHDh20ZMkSz7y2bduqfv36xf69+uqrkqTTp0/rueeeU8uWLXXTTTfp2Wef1enTp30+LlyZq62/JL3zzjtq166drr/+evXp00cHDx70zKP+9nKx+n/22Wfq0qWLEhMT1aVLF23YsKHIMv/5z3/UqVMnNWnSRH/+85+L1P9Cb7zxhtq2bevV/qNkrNT/zTffVJs2bdSkSRP16dNH+/fv98zLysrSyJEjlZycrBtvvFGjRo3S2bNnfTUcXCUr9e/SpUux1/9du3ZJkjIyMjR48GDdcMMNuvnmmzV16lTl5eX5dEy4Ohd7DhTKzMxU69attXz5cs800zT1+uuvq23btrr++uv10EMPac+ePRdd97hx49SrVy+v9R0ld7X1v9CaNWtUv379q14vyg4r9f/Xv/6lDh06qGnTpurdu7cOHz5cZH3jxo3TjTfeqJYtW2r69OnithFl19XW/2Lv/+vXr6+VK1dK+vkYoFmzZrrtttsuue9A2UTAiFKRk5OjIUOGaPfu3Z5p6enp6tu3r5o3b64VK1Zo8ODBGj9+vNavXy9JWrp0qf7f//t/nn+jRo1SeHi4unbtKkkaM2aMfvjhB73++utKSUnR3r17NXLkSH8MD5dhpf6fffaZpk6dqpEjR2rZsmWqUKGCBg4c6Fme+tvHxep/4MABDRo0SN26ddOqVavUtWtXDRw4UIcOHZIkHTlyRAMHDlS3bt20dOlSRUZG6vHHHy92AHnw4EHPhw4om6zU/7333tOMGTM0btw4vfvuu6pcubL69+/vqf/EiRP17bffKiUlRW+99Za++eYbTZ482S/jw6+zUv/8/Hzt379f8+fPL3IcULt2bUnSX/7yF505c0aLFi3SK6+8olWrVumNN97wy/hweRd7Dlxo6tSpSktLKzJt4cKFmjNnjkaNGqVly5YpISFBffv2VXZ2dpHHff3113rnnXe81neUnJX6Fzp9+rT+9re/WVovygYr9f/66681dOhQPfLII1q+fLmCgoI0ZMgQz/wJEyboP//5j1JSUvTiiy9q8eLFWrRokVfHAWus1P/C1/3/9//+nx599FFVq1ZN7dq1k2maGjhwoI4ePaq5c+dqxIgRmjx5sj788ENfDAelgIARJbZnzx7dd999+t///ldk+scff6zo6GgNGTJENWvW1J133qm77rpL77//viQpMjJSMTExiomJUUhIiGbMmKFnnnlG1apVU1ZWltauXavRo0ercePGatSokUaMGKGPP/5YOTk5/hgmLsFq/Tds2KBWrVrp1ltvVa1atTRo0CDt3LlTx48fp/42cqn6Hz16VPfdd58efvhhVa9eXY888ogqVKigb775RpK0ZMkSNW7cWL1791a9evU0adIkHT58WJs3by6ynjFjxqhBgwY+Gw+ujtX6Z2ZmatiwYbrllltUs2ZN9e3bVz/++KOOHz8uSQoMDNSoUaM82//dd9+tr776yufjw6+zWv9Dhw4pNzdXiYmJnuOAmJgYBQQEyOVyKSoqSmPGjFHdunXVrFkzdejQgfqXUZd6DhTasmWLNm7cqJiYmCLTV6xYod69e3uOAcaOHauTJ0/q66+/9jzG5XJp9OjRatq0qTeHgBKwWv9CU6ZMUfXq1a96vSgbrNZ/zpw56tKli+6//37Vrl1bzz33nNLT03X8+HGdPHlSy5Yt0/jx45WYmKgWLVqod+/e2r59uy+GhKtgtf4Xvu6fO3dO8+bN04QJExQeHq5vv/1WW7du1YsvvqiGDRvq1ltv1aOPPqqUlBRfDAmlgIARJbZ582YlJycX+2SpdevWmjRpUrHHnzlzpti0lJQUxcTE6O6775YkORwOzZ49u1iwkJ+f77lMbvr06WrVqpUSExPVq1cvPuH0E6v1r1y5sr788kvt3btXeXl5WrlypapVq6ZKlSpRfxu5VP2Tk5P13HPPSZJyc3O1ZMkSuVwuJSYmSpK2b9+uZs2aeR4fGhqqRo0aadu2bZ5pK1euVHZ2tu65555i7VL/ssFq/Xv27Knu3btLKggb//nPf6pevXqKjIyUVBAs33DDDZIKwqgPPvhAzZs396x/7ty5uvXWW3XdddepW7du2rJli9fHiuKs1n/Pnj2qWrWqgoODi60zKChI06ZNU40aNSRJu3fv1rp164rUn+2/7LjUc0AqCAhHjRql0aNHKygoqMi8v/71r+rSpYvnd8MwZJqmMjMzPdNef/111a9fXzfffHORZXNzcz1foZCUlKT+/fsrNTW1lEeGK2G1/oXLbt68Wf3797+q9VL/ssNq/Tdv3qzbbrvN83v16tW1bt06RUZG6quvvlJYWFiRff5jjz3meU9x+vRpPfHEE2rWrJluvPFGzxnv8L2SbP+F/v73v6tFixZq2bKlpIIrlyIjI4t88FC/fn19++23ys3NZfu3gQB/dwD216NHj4tOT0hIUEJCguf3jIwMrVq1Sk888USRx2VnZ2v+/Pl6/vnn5XAUZN4hISH6wx/+UORxc+fOVf369RUZGamPPvpIixYt0owZMxQbG6uXXnpJw4cP19KlS0t5dLgcq/Xv1auXvvjiC3Xs2FFOp1OhoaFasGCBnE6nnE4n9beJS9W/0IEDB3THHXcoPz9fQ4cO9Twn0tPTFRsbW+SxUVFROnr0qCTp+PHjmjZtmt58803t2LGjyOOof9lhtf6Fli5dqueee05BQUFKSUmRYRhF5j/zzDOeDx8Kv0Lh+++/15QpU/Tqq6+qbt26mjt3rp566in9+9//9ryGwDes1n/v3r0KDAxUv3799O2336pWrVr661//6gkgCz344IP68ssv1ahRI/Xs2VMS239Z82vPgdmzZ6thw4Zq1apVsXkXfsAkFZzVnpeX5/lgYe/evXrnnXf07rvvFrtEesGCBfryyy81Z84chYSEaOzYsZo4caJeeeWVUhgRrobV+l8YPgQGBl7Veql/2WGl/qdPn9apU6eUn5+vPn366IcfflBiYqLGjh2ruLg4HTx4UNWqVdPKlSs1e/Zs5ebmqlu3bhowYIAcDof+/ve/Kz09Xe+8847y8vI0bNgwzZw5U3/961+9PVz8gtXtv9CRI0f0wQcfaOHChZ5p0dHRyszMVHZ2tkJDQyUVXBWRl5enzMxMvffee2z/ZRwBI3zi3LlzeuKJJxQdHe05a6XQ6tWrVaFCBbVv3/6Sy8+fP19r1qzxfAfT4cOHFRgYqPj4eMXHx2vUqFHat2+fV8cA6y5W/7S0NOXk5HjOVJk5c6aGDRumpUuXFjurhfrbV2RkpJYuXaqtW7dq8uTJqlGjhjp06KDs7Oxin2gGBQXJ5XJJKvgOvq5du6pevXrFAkbqbx+Xqn+hli1basWKFVq2bJkef/xxrVixosin1n379tUDDzygF198UX379tXy5ct1+PBhGYah+Ph4JSQk6KmnntKtt94qt9tNwFjGXKr+P/74o06dOqV7771XgwcP1uLFi/XQQw9p9erVqlq1qmf5kSNH6tSpU5owYYKGDBmi2bNns/3bxJ49e7Rw4UK99957l33s9u3b9cILL6hPnz6KiYmRaZoaPXq057jhlw4dOqTg4GBVq1ZNlStX1uTJk3Xy5EkvjAJWXa7+M2bMUKNGjdSqVaurvoEL9S/7fq3+WVlZkgq+Z/Hpp5/Wk08+qVdeeUX9+vXT8uXLlZWVpQMHDmjhwoWaNGmS0tPTNXr0aIWGhnpuBlOxYkUlJCQoNDSUYKkMutL9/9KlS9W4cWM1adLEM61JkyaKjY3V+PHjNXLkSKWnp+vNN9+UVHD2Mtt/2ceROLzu7Nmz6tevn/bv36/XXnvN82lEobVr16pjx44KCLh43r1gwQJNmDBBw4cP93wKcueddyokJETt2rXTAw88oBUrVqhevXpeHwuu3qXqP2bMGLVv316dO3dWYmKiXnzxRR09elSffPJJkeWpv72Fh4erYcOG6tmzp+69917Nnz9fkhQcHOwJEwu5XC6Fhobqs88+07Zt24rc9OdC1N8+LlX/QvHx8WrYsKFGjhypqlWreu4gWKhu3bpq2rSpXnrpJe3cuVNffvmlWrVqpWuvvVadO3dW165dNWfOHNWuXfuSryHwn0vVf/z48fr444/1xz/+UY0aNdLYsWOVkJCgd999t8jyv//975WcnKyJEyfq008/1aFDh9j+bcA0TY0cOVKDBw++aEB4oa1bt6pPnz76wx/+oCeffFKStGjRIuXn5xf7QLpQ9+7dlZ6erlatWql3797asGGD6tSpU+rjgDWXq/+uXbu0ePFijRgxwtL6qX/Zdrn6O51OSdK9996ru+66S4mJiZo2bZp27dqlbdu2KSAgQGfOnNGLL76opKQktW/fXv379/dchvvnP/9ZX3/9tVq0aKEBAwZox44dqlmzpi+HiF9xNfv/tWvXFvmqDKng/cHLL7+sjRs36oYbblDPnj11//33S5LCwsLY/m2AgBFedebMGfXp00e7d+/W22+/XewFwOVyafPmzfrjH/940eVTUlL0/PPPa9iwYXrooYc802NiYrRmzRrNmjVL1157rVJSUnTfffcVu/sg/OvX6v/dd9/p97//vef3ihUrqkaNGjp8+LBnGvW3r927dxf7Xrw6deroxIkTkqS4uDgdO3asyPxjx44pJiZGq1ev1tGjR9WiRQslJSVpzJgxOnLkiJKSkrRlyxbqbwOXq//GjRuLnHVmGIZq166tEydOyOVyae3atUW+Uyk6OlqVK1fWiRMnFBoaqiVLlujtt99W8+bNtXz5cnXr1o3v4ClDLlf/gIAAhYWFeeYV1j81NVVnzpzR6tWr5Xa7PfPr1q0rSTpx4gTbvw0cOXJEW7du1QsvvKCkpCQlJSXpyJEjGjNmjB599FHP4zZt2qTevXvrpptu0osvvug5A3nVqlX69ttvdf311yspKUmvvfaatmzZ4llPvXr1tG7dOk2dOlUxMTGaPn26evfu7bkLPfzrcvX/8MMPderUKd12221KSkpS3759JUlJSUlXdMYr9S/bLlf/iIgIBQYGqnbt2p5lIiIiVLlyZR09elQxMTGeM9QK1apVSz/99JMkqUWLFtqwYYPGjBmjoKAgjR49Ws8884zPx4mLu9L9/08//aQ9e/aoXbt2xdaRmJiodevW6d///rfWr1+vWrVqKSIiQhUrVmT7twE+7ofXuN1uDRo0SIcOHdK8efMu+unCzp07lZeXV+x7l6SCOwxOmTJFw4cP18MPP1xk3vr163XkyBH16NFDbdq00aBBg9SqVSvt2rWryGnW8J/L1T82NlZ79+71fNeiy+XSoUOHPN/RRf3t7dNPP9Xy5cu1Zs0az/fqfffdd54DyiZNmhS5K2x2dra+//57DRo0SPfcc0+RL33/8MMPNW/ePM2bN09xcXHU3wYuV///+7//U7Vq1fT8889LKriB0w8//KA///nPcjgcevbZZzV+/Hh16tRJUsEB64kTJ1SnTh1t3bpVGzdu1IABA3TTTTdp6NChatmypb766it17NjRPwNGEZerf69evZScnKxBgwZJKni92Llzp3r27Kns7Gw9/fTTqlq1qpKSkjzLOp1O1apVi+3fBuLi4vThhx8WmdarVy/16tXLc7bKrl27NGDAALVu3VrTp08vcgbytGnTdO7cOc/v8+bN0/bt2zVt2jTFxsZq5cqVCgoKUseOHXXHHXdo27Zt6t69uzIyMi57xgy873L1Dw4OVufOnT3ztm/frmHDhmnlypWKioq67Pqpf9l2ufoHBASoUaNG+uGHHzyv2cePH9eJEydUrVo1hYeHKycnRz/++KNq1aolSdq3b58ncHzrrbdUv359de3aVV27dtWqVas0fPhw3w4Sl3Ql+3+pYLuvWrWq4uPjizz25MmTGjBggGbOnOm5+/T69es9N/1h+y/7CBjhNUuXLtWmTZs0a9YsXXPNNUpPT5ckBQYGqnLlypIKznJISEgo9l1sJ0+e1PPPP6+uXbvqzjvv9CwrFXynk9vt1pQpUxQTE6MGDRpo1apVCg0N5RT5MuRy9b/33ns1e/Zs1axZUzVq1NBrr72mihUrqm3bttS/HOjSpYtee+01TZs2Tffee68+//xzvffee55LXO6++26lpKTo9ddf16233qoZM2YoISFBycnJMgyjyJuMqKgoBQQEeO4qS/3LvsvVv0ePHnryySd14403qlGjRnrzzTd17tw53XXXXQoICFD37t01ffp0ValSRSEhIRo/frzatWunevXq6b///a9mzJih6OhotWjRQl9++aWysrJUv359P48ahS5X/7Zt22rGjBlq0KCBatWqpblz5yozM1Ndu3ZVWFiY2rdvr/Hjx2vChAnKysrSc889pwcffFBhYWFs/zZw4f76wmlRUVGKi4uTJI0ePVpVq1bV8OHDPWe2SgWX1Rc+plClSpUUEhLiWWdmZqZmz56tiIgIJSQk6P3331eVKlUUERHh5ZHhSlxJ/QvfB0jy3Nztl8tcCvUv266k/o888oiGDx+uBg0a6Nprr9XUqVPVoEEDJSYmyjAMtWnTRsOHD9fYsWOVnp6u119/XQMGDJBU8HxZtGiRJk2apMqVK2vt2rVq2LChz8eJi7uS+ksFGcDFTj6qXLmysrKyNHXqVA0YMEAbN27UsmXLPF+xwvZf9hEwwmvWrl0rt9utfv36FZnevHlzzZs3T1LBJZGVKlUqtuznn3+urKwsrVixQitWrCgy75NPPlHbtm01ePBgz5f/1q5dWzNnzrzouuAfl6t/nz59JBV8yfPJkyeVlJSkt956S8HBwfr444+pv81VqVJFKSkpmjhxoubPn69q1arplVdeUaNGjSQV3GX8H//4hyZOnKgZM2YoKSlJM2bMKHYX4Yuh/mXf5erfrl07jR07Vq+++qp++uknNW3aVHPmzFHFihUlSUOGDJFhGHrqqaeUlZWl9u3ba+TIkZKkBg0a6G9/+5tmzpyp559/XvHx8Zo6dSrfwVOGXK7+Dz/8sHJycjRhwgQdO3ZMTZo00Ztvvum5bHrixImaOHGiHnnkEUnSXXfdpaFDh0pi+y8P0tPTtXXrVklSmzZtisybNGmSunXr9qvL9+zZU0ePHtWwYcN06tQpNW7cWLNmzfJ8txvKN+pvf7fffrtOnz6tqVOnKiMjQ82bN9fMmTM9x4DTpk3T+PHj9cADDyg0NFQ9e/ZUr169JElPPvmkMjMzNWDAAGVlZenGG2/U1KlT/TkcWHCpDECSXnrpJY0ZM0adO3dWQkKCXnnlFc/Vjmz/ZZ9hcsE6AAAAAAAAAIu4yQsAAAAAAAAAywgYAQAAAAAAAFhGwAgAAAAAAADAMgJGAAAAAAAAAJYRMAIAAAAAAACwjIARAAAAAAAAgGUEjAAAAAAAAAAsI2AEAAAAAAAAYBkBIwAAAAAAAADLCBgBAAAAAAAAWEbACAAAgFJ38OBBPfzww2rSpIk6d+6slJQUtW3bVpK0ZcsWdevWTYmJiercubPWrl3rWe7ZZ5/VpEmT9NRTT6lJkya65ZZbtHLlSj+NAgAAAFeCgBEAAAClKi8vT/369dM111yjZcuW6bHHHtOrr74qSUpPT1e/fv3UrVs3vf/++3r00Uf17LPPasuWLZ7lFyxYoEaNGumDDz5Q+/btNWbMGGVmZvprOAAAALiMAH93AAAAAOXLxo0b9dNPP2nx4sUKCwtT3bp1tWvXLq1atUoLFixQy5Yt9eCDD0qSatSoof/+9796++231axZM0lS/fr11bdvX0nSk08+qblz52r37t26/vrr/TYmAMD/b+feUSKJojAA/63TmaGJGmgF5hoamBv4ACNxAaI7MHELPhDEwEQFN9AIBoqI4ApUMFDKwMDAzMyGnsgenGGSmpKe4PugoO65cDhh8XPrAvydgBEAgFo9PDykKIoMDAx0axMTEzk9Pc3T01MuLy8zOTnZ3fv4+EhRFN312NhY9/2zR7vd/v7BAQCoRMAIAECt+vv70+l0vtQ+1+12O3Nzc1ldXf2y/+PHr8/SZrP5R8/f+wEA8P9wByMAALUaHx9PWZZ5f3/v1u7u7pIkRVHk+fk5o6Oj3efi4iKtVqtX4wIA8I8EjAAA1GpqaipDQ0PZ2NjI4+Njzs7OcnR0lCRZXl7O7e1ttra2UpZlWq1WNjc3Mzw83OOpAQCoSsAIAECt+vr6sru7m9fX1ywsLGRvby+Li4tpNpsZGRnJ/v5+rq+vMzs7m+3t7ayvr2d+fr7XYwMAUFGj40IbAABq9Pb2lvv7+0xPT3drBwcHubq6yvHxcQ8nAwDgOzjBCABA7dbW1nJycpKXl5fc3Nzk8PAwMzMzvR4LAIBv4AQjAAC1Oz8/z87OTsqyzODgYJaWlrKyspJGo9Hr0QAAqJmAEQAAAACozC/SAAAAAEBlAkYAAAAAoDIBIwAAAABQmYARAAAAAKhMwAgAAAAAVCZgBAAAAAAqEzACAAAAAJUJGAEAAACAygSMAAAAAEBlPwHK7r1UdMKM9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig = Figure(figsize=(16, 6))\n", "sns.histplot(\n", " df_dpi_6.sort_values(\"gen\"),\n", " x=\"gen\",\n", " hue=\"gen\",\n", " shrink=0.8,\n", " ax=fig.subplots(1, 1),\n", ")\n", "\n", "fig" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ANOVA" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "rpv_formula = f\"~ C(gen) + C(exp) + C(exp):C(gen)\"" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
dpisource of variationFPR(>F)
00genotype (between)1.1332863.493874e-01
10interaction genotype/experiment0.1521749.999372e-01
23genotype (between)0.9881924.509143e-01
33interaction genotype/experiment1.1111003.579007e-01
44genotype (between)11.0710701.171819e-10
54interaction genotype/experiment2.0377091.894190e-02
65genotype (between)39.1127111.170367e-25
75interaction genotype/experiment1.8097004.231800e-02
86genotype (between)35.1225654.064701e-24
96interaction genotype/experiment1.4193311.516602e-01
\n", "
" ], "text/plain": [ " dpi source of variation F PR(>F)\n", "0 0 genotype (between) 1.133286 3.493874e-01\n", "1 0 interaction genotype/experiment 0.152174 9.999372e-01\n", "2 3 genotype (between) 0.988192 4.509143e-01\n", "3 3 interaction genotype/experiment 1.111100 3.579007e-01\n", "4 4 genotype (between) 11.071070 1.171819e-10\n", "5 4 interaction genotype/experiment 2.037709 1.894190e-02\n", "6 5 genotype (between) 39.112711 1.170367e-25\n", "7 5 interaction genotype/experiment 1.809700 4.231800e-02\n", "8 6 genotype (between) 35.122565 4.064701e-24\n", "9 6 interaction genotype/experiment 1.419331 1.516602e-01" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(\n", " pd.concat(\n", " [\n", " sm.stats.anova_lm(\n", " lpgd.get_model(df=df, target=\"oiv\", dpi=i, formula=rpv_formula)\n", " ).assign(dpi=i)\n", " for i in sorted(list(df.dpi.unique()))\n", " ]\n", " )\n", " .reset_index()\n", " .set_index(\"dpi\")\n", " .drop(\n", " [\"df\", \"sum_sq\", \"mean_sq\"],\n", " axis=1,\n", " )\n", " .query(\"index != 'Residual'\")\n", " .query(\"index != 'C(exp)'\")\n", " .rename(columns={\"index\": \"source of variation\"})\n", " .replace(\"C(gen)\", \"genotype (between)\")\n", " .replace(\"C(exp):C(gen)\", \"interaction genotype/experiment\")\n", " .reset_index()\n", ")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genoivp_oiv
meanstdmeanstd
01272s3.9090912.0714513.3636361.501514
11282s7.3076921.1094007.3076920.751068
21304s3.3076921.7974343.1538461.519109
31333s3.1538460.9870963.1538460.987096
41353s7.6153850.9607697.3076920.751068
51424s6.0769231.5525006.6923080.751068
61441s8.6666670.7784998.1666671.029857
71466s6.6923080.7510687.3076920.751068
81479s6.6923081.3774746.8461540.987096
\n", "
" ], "text/plain": [ " gen oiv p_oiv \n", " mean std mean std\n", "0 1272s 3.909091 2.071451 3.363636 1.501514\n", "1 1282s 7.307692 1.109400 7.307692 0.751068\n", "2 1304s 3.307692 1.797434 3.153846 1.519109\n", "3 1333s 3.153846 0.987096 3.153846 0.987096\n", "4 1353s 7.615385 0.960769 7.307692 0.751068\n", "5 1424s 6.076923 1.552500 6.692308 0.751068\n", "6 1441s 8.666667 0.778499 8.166667 1.029857\n", "7 1466s 6.692308 0.751068 7.307692 0.751068\n", "8 1479s 6.692308 1.377474 6.846154 0.987096" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_dpi_6.groupby(\"gen\").agg(\n", " {\"oiv\": [\"mean\", \"std\"], \"p_oiv\": [\"mean\", \"std\"]}\n", ").reset_index()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ "
\n", "
\n", "
\n", "" ], "text/plain": [ "GridBox(design=" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lpgd.plot_assumptions(\n", " models=[\n", " lpgd.get_model(df=df_dpi_6, target=\"oiv\", dpi=6, formula=rpv_formula),\n", " lpgd.get_model(df=df_dpi_6, target=\"p_oiv\", dpi=6, formula=rpv_formula),\n", " ],\n", " titles=[\"Score OIV 452-1\", \"Predicted OIV 452-1\"],\n", " figsize=(10, 5),\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Tukey HSD" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
 group1group2meandiff_predp-adj_predlower_predupper_predreject_predmeandiff_obsp-adj_obslower_obsupper_obsreject_obs
01272s1282s3.94410.0000002.60175.2864True3.39860.0000001.67925.118True
11272s1304s-0.20980.999900-1.55221.1326False-0.60140.971844-2.32081.118False
21272s1333s-0.20980.999900-1.55221.1326False-0.75520.898723-2.47460.9641False
31272s1353s3.94410.0000002.60175.2864True3.70630.0000001.98695.4257True
41272s1424s3.32870.0000001.98634.671True2.16780.0037240.44843.8872True
51272s1441s4.8030.0000003.43536.1708True4.75760.0000003.00576.5095True
61272s1466s3.94410.0000002.60175.2864True2.78320.0000461.06384.5026True
71272s1479s3.48250.0000002.14014.8249True2.78320.0000461.06384.5026True
81282s1304s-4.15380.000000-5.4391-2.8686True-4.00.000000-5.6462-2.3538True
91282s1333s-4.15380.000000-5.4391-2.8686True-4.15380.000000-5.8-2.5077True
101282s1353s0.01.000000-1.28521.2852False0.30770.999616-1.33851.9539False
111282s1424s-0.61540.845319-1.90060.6698False-1.23080.312469-2.8770.4154False
121282s1441s0.8590.496366-0.45282.1707False1.3590.215563-0.32123.0391False
131282s1466s0.01.000000-1.28521.2852False-0.61540.958195-2.26161.0308False
141282s1479s-0.46150.967009-1.74680.8237False-0.61540.958195-2.26161.0308False
151304s1333s0.01.000000-1.28521.2852False-0.15380.999998-1.81.4923False
161304s1353s4.15380.0000002.86865.4391True4.30770.0000002.66155.9539True
171304s1424s3.53850.0000002.25324.8237True2.76920.0000201.1234.4154True
181304s1441s5.01280.0000003.70116.3246True5.3590.0000003.67887.0391True
191304s1466s4.15380.0000002.86865.4391True3.38460.0000001.73845.0308True
201304s1479s3.69230.0000002.40714.9775True3.38460.0000001.73845.0308True
211333s1353s4.15380.0000002.86865.4391True4.46150.0000002.81546.1077True
221333s1424s3.53850.0000002.25324.8237True2.92310.0000051.27694.5693True
231333s1441s5.01280.0000003.70116.3246True5.51280.0000003.83277.193True
241333s1466s4.15380.0000002.86865.4391True3.53850.0000001.89235.1846True
251333s1479s3.69230.0000002.40714.9775True3.53850.0000001.89235.1846True
261353s1424s-0.61540.845319-1.90060.6698False-1.53850.086498-3.18460.1077False
271353s1441s0.8590.496366-0.45282.1707False1.05130.559274-0.62882.7314False
281353s1466s0.01.000000-1.28521.2852False-0.92310.697549-2.56930.7231False
291353s1479s-0.46150.967009-1.74680.8237False-0.92310.697549-2.56930.7231False
301424s1441s1.47440.0156960.16262.7861True2.58970.0001280.90964.2699True
311424s1466s0.61540.845319-0.66981.9006False0.61540.958195-1.03082.2616False
321424s1479s0.15380.999987-1.13141.4391False0.61540.958195-1.03082.2616False
331441s1466s-0.8590.496366-2.17070.4528False-1.97440.009337-3.6545-0.2942True
341441s1479s-1.32050.047151-2.6322-0.0088True-1.97440.009337-3.6545-0.2942True
351466s1479s-0.46150.967009-1.74680.8237False0.01.000000-1.64621.6462False
\n" ], "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dft = lpgd.get_tuckey_compare(df=df_dpi_6, groups=\"gen\", df_genotypes=None)\n", "dft.style.apply(lpgd.hghlight_rejection, axis=None)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAAIeCAYAAABDWKvdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBmElEQVR4nOzdd3xUVf7/8XcKoRghILABghQlIZSE0EKRpYiAqAgRRQ2IoBSlLoqigBQFlLYiUgVUNAgCAV3UtSyK7iLSAoIMCAgIKL0bIMnk/P7gm/kREkgmmZspvJ6PBw/N3HvOfeece2fm5jP3jp8xxggAAAAAAAAAAAAu5e/uAAAAAAAAAAAAAL6IIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAOBDjDHujgAAgM/j9RYArMdzLQBfQREGAIAcdOvWTREREZn+Va9eXXXr1lVcXJw++eQTp/vr1q2bSzMeOXJEvXv31uHDh/Pd16FDhxQREaHExEQXJAMAILNt27Zp6NChatGihaKiotS6dWuNHDlSBw8etGR77733npo2baqoqCjNnDlTrVq10rBhwyTl7TVv5syZmj9/viVZAcBqzz33nCIiIrRgwQJ3R7mhTZs2qXfv3i7pKzExURERETp06JBL+gMAZwW6OwAAAN6gRo0aGjVqlONnu92uI0eO6L333tMLL7ygkJAQNW/ePFd9Xd2Pq6xdu1Zr1qxxeb8AALhSQkKCxo8fr9jYWD333HMqW7asDhw4oPnz5+urr77S+++/r+rVq7tsexcuXNAbb7yhFi1aqGfPngoLC9OyZcscy8uWLaslS5bo9ttvz3Wf06ZNU//+/V2WEQAKyvnz5/XNN98oPDxcS5YsUY8ePeTn5+fuWNlaunSp9u7d6+4YAOASFGEAAMiF4OBg1alTJ8vjf//739W4cWMlJibmughz5513ujgdAACeb9OmTRo3bpzi4+M1fPhwx+OxsbFq3bq1OnbsqJdfftmlV2KePXtW6enpat26tRo0aJBleVBQULav7wDgi1atWiVJGj58uLp3765169apcePGbk4FAL6P25EBAJAPhQsXVlBQkOMTZOnp6Zo7d67uuece1apVS23bttUHH3yQqc21tyPLTRtJWrlypTp16qTo6Gi1aNFCU6ZMUUpKihITE/XSSy9Jku6++27HLVakK58gu++++1SrVi21aNFC06dPl91uz9TvV199pQ4dOigqKkqdOnXSzp07XTY+AABkmD9/vm699VYNGTIky7JSpUpp2LBhuvvuu5WcnCy73a6EhAQ98MADioqKUosWLTR58mRdvnzZ0WbYsGF68skntXz5crVt21a1atXSgw8+qO+//17SldvPtGrVSpL08ssvKyIiIst2s7sd2W+//ab+/furYcOGatCggfr06eP4NHZGH2+//Xa2/QGAJ1u+fLkaN26sRo0aqVKlSlq8eHGWda53zpFhy5Yt6tmzp+rWratGjRppyJAhOnr0qGP5mTNn9Morr6hJkyaqXbu2HnnkEf3444+ZthEREaEPP/xQL774omJiYtSkSRONGzfO8Rw/bNgwrVixQocPH870HH358mVNnDhRzZs3V61atfTAAw/o888/z9R3enq6Zs6cqRYtWig6OlrPPvuszp4967IxBIC84EoYAABywRijtLQ0x892u12HDx/WjBkz9Ndff+nBBx+UJI0ePVqJiYnq06ePYmJitGHDBo0fP17nzp1Tv379su07N20SEhI0duxYPfzwwxoyZIgOHjyoiRMn6uzZsxo8eLCeeeYZzZo1K9MfhebMmaN//vOf6tq1q1566SXZbDZNnz5df/75p8aPHy9JWr16tQYOHKgHHnhAQ4cOlc1m09ChQ60cSgDATcgYo//+979q1aqVihYtmu067du3d/z/8OHD9cknn6hXr16qX7++duzYoRkzZshms2nevHmODz9s375dx44d08CBAxUcHKxp06ZpwIAB+v7779WiRQu9/fbb6t+/v5555hm1aNEix5xHjx5Vly5d9Le//U2jR49WsWLFNH36dHXv3l2rVq3SkiVL1KVLF3Xu3FkPP/ywS8YGAArC7t27tW3bNk2bNk2S1LFjR82cOVMnTpxQ6dKlJd34nGPs2LHasWOHunbtqujoaE2cOFF2u11TpkzRU089pZUrV8put6t79+46ceKE/vGPf6hs2bJavny5nn76ac2bNy/TVTfTpk1TdHS03nzzTe3du1dvvvmmjh8/rjfffFPPPvusTp06pR07dujtt9/W7bffLmOM+vXrp82bN2vgwIG644479PXXX+sf//iHUlJS1LFjR0nSpEmTtHDhQj3zzDOKjo7WF198oSlTphT4eAPA1SjCAACQCxs2bFDNmjUzPebn56fw8HBNmzZNLVu21L59+/Txxx9ryJAhji+RvOuuu+Tn56c5c+bo8ccfV8mSJTP1kZs2JUqU0IwZM9S6dWu99tprjrYXL17UZ599pltvvdVxL/vIyEiFhYXp/Pnzmjlzprp06aIRI0Y4+g0JCdGIESPUo0cPVatWTTNmzFBUVJQmTZokSWrWrJkkcaICAHCp06dP6/LlywoLC8tx3T179mjZsmV67rnnHK+NTZs2VdmyZfXCCy/o+++/d9wC9Pz580pMTHS8DhYrVkxdu3bVunXr1LZtW0VGRkqSbr/99lzdduy9995TSkqK3n33XZUpU0aSVL16dT322GPaunWrY7uhoaHcxgyAV1m+fLlCQkIcVwh26tRJ06dP17Jly9S3b1+lp6ff8JwjNTVVs2fPVkhIiBYsWKDChQtLuvLdWs8995yjyLNz5059/PHHio6OlnTl9s3dunXT5MmTtXz5cke/pUqV0uzZsxUYGKjmzZvL399fEyZM0IABA3THHXeoVKlSmW4Z+b///U8//PCD/vnPfzqK9s2aNdPFixc1efJk3X///UpOTtYHH3ygHj16OL67q1mzZjp27Jh++OEHy8cYAK6H25EBAJALNWvW1LJly7Rs2TLNnDlT4eHhqly5st588021a9dOkrRu3ToZY9SqVSulpaU5/rVq1UqXL1/Wpk2bsvSbmzb79u3TyZMndc8992Rq+9RTTykxMVGFChXK0m9SUpIuXbqUbb/SlZOYS5cu6ZdfflHLli0ztb333ntdNWwAAEiSAgICJCnLLTGzs379eknSfffdl+nx++67TwEBAfrpp58cj5UqVcpRgJGuFEekK380zItNmzapTp06jgJMRp/ffvttrr/7DQA8TWpqqj799FO1bt1aly5d0rlz53TLLbeoXr16+vjjj5Wenp6rc45Nmzbp73//u6MAI0kxMTFavXq1IiMj9eOPP6pMmTKqWbOm4/zDbrerZcuW2r59e6bbgj3wwAMKDPz/nw1v27atpCsffsvOjz/+KD8/PzVv3jzL+c3x48e1e/dubdmyRampqZzfAPA4XAkDAEAu3HLLLapdu7bj5+joaHXo0EE9e/ZUYmKiSpUqpTNnzkjK+kejDFffKzlDbtpkXD1z22235TpvRr8ZnyC+1rFjx3T27FkZY7JcnVO2bNlcbwcAgNwoUaKEbrnlFv3xxx/XXSc5OVmpqamOP9JdXQiRpMDAQJUsWVLnz593PHbtrc2u/o62vDhz5kyurtYBAG/y3Xff6eTJk44PlV3rhx9+UHBwsKQbn3OcOXMmx+XHjx/PcgeBDMePH1eJEiUkSX/7298yLcvo93rf33LmzBkZY1S3bt1slx87dkznzp2TpCznN9e+ngBAQaMIAwBAHpQuXVqvvPKKBg0apHHjxmnKlCkqXry4JOn999/XLbfckqVN+fLlszyWmzanTp2SJMd/M5w+fVo7duxQTEzMdfudPHmyKleunG3+kJAQ+fv768SJE5mWZRRwAABwpbvuuks//fSTLl++nOlT1Bk+/vhjvfHGGxo4cKCkK3+sq1ChgmN5amqqTp8+neWPa6506623Znm9la58AjssLEwVK1a0bNsAYJXly5erYsWKGjduXKbHjTHq37+/Fi9erCFDhki68TnH9Z4j16xZo8jISN16662qXLmyJk+enG2Oq4vcp0+fzrQs45ykVKlS2ba99dZbVaxYMS1cuDDb5ZUqVdLPP/8sSTp58qSqVq3qWMb5DQB343ZkAADkUbt27dSsWTOtWrVK69evV/369SVdOaGoXbu249+pU6c0bdq0bN/856ZN1apVVbJkSX377beZ2n7yySfq3bu3UlNT5e+f+SU9OjpahQoV0tGjRzP1GxgYqKlTp+rQoUMqXLiwYmJi9NVXX8kY42i7evVqF48UAABSz549debMGb355ptZlh0/flwLFizQnXfe6bgVzmeffZZpnc8++0x2u1316tWzLGP9+vW1devWTH9kPHnypJ5++mmtWbNGkrK85gKAJzt+/Lh++OEH3XfffYqNjc30r1GjRmrXrp3WrFmj4sWL53jOUb9+ff3vf/9TSkqKY/mOHTvUu3dv/fLLL2rYsKH+/PNP3XbbbZnOQf73v/9p3rx5jltTSlnPOb788kv5+fmpUaNGkrI+1zZs2FDJyckyxmTq+9dff9WMGTOUlpammJgYFSlSRP/+978ztb32dwKAgsaVMAAA5MPLL7+sDh066LXXXtOKFSvUoUMHjRw5UocPH1atWrW0b98+/fOf/1RYWFi2V6RERETk2CYgIEADBgzQ2LFjddttt6lVq1bat2+f3nrrLcXHx6tEiRKOK1++/vpr/f3vf9cdd9yhp59+WtOmTdOFCxcUGxuro0ePatq0afLz81P16tUlSUOGDFH37t3Vv39/denSRfv27dPs2bMLcggBADeJOnXqaNCgQXrzzTe1d+9edezYUSVLltTu3bs1f/58Xb58WW+++abuuOMOderUSW+99ZYuXryoBg0ayGaz6e2331ZsbKyaNWtmWcYnn3xSK1eu1NNPP60+ffqoUKFCmjVrlkJDQ/XAAw9IunK16ebNm7VhwwbVr1/fcQs0APBEK1euVFpa2nVvf9yxY0ctXbpUH3/8cY7nHM8++6y6dOmiPn366IknntClS5f05ptvKioqSk2bNlVaWpo+/PBD9ejRQ3379lW5cuW0du1avfPOO+ratWum77LcsmWLnn/+eT344IPauXOnpk+frkceecRxxWHx4sV14sQJx1U2zZs3V4MGDfTss8/q2Wef1R133KGff/5Zb731lpo1a+a4gubZZ5/Vm2++qaJFi6pRo0Zas2YNRRgAbkcRBgCAfKhataq6deumBQsW6KOPPtKECRM0Z84cLV68WEeOHNFtt92m9u3ba/DgwZk++XW13LSJj49XsWLFNH/+fC1ZskShoaHq1auXevXqJUmKjY1VkyZNNGXKFP3444+aO3euBg8erDJlymjRokWaN2+eSpQoocaNG2vIkCG69dZbJV35xO8777yjqVOnqn///goLC9P48ePVt2/fghlAAMBN5ZlnnlGNGjWUkJCg8ePH6+zZsypXrpxatGjh+IOdJI0bN06VKlXS8uXL9c4776hs2bJ64okn9Oyzz1p6JUq5cuW0aNEiTZo0ScOGDVNQUJBiY2P1z3/+0/E9Bn379tXMmTPVq1cvff7559nebhQAPEViYqKqVaum8PDwbJfXq1dPYWFhWrp0qb799tsbnnPUqFFDH3zwgaZMmaLBgwcrODhYzZs31/PPP6+goCAFBQUpISFBU6ZM0aRJk3T+/HlVqFBBzz33nHr27Jlpu927d9fRo0fVv39/lSxZUn379lWfPn0cy+Pi4rRmzRr169dPAwcOVO/evTV37lxNmzZNc+bM0cmTJ/W3v/1NPXr0UL9+/Rzt+vTpo2LFiun999/X+++/r5iYGL344osaPXq06wcXAHLJz1x9/xEAAGC5Rx55RCEhIZo7d667owAAAABAgYqIiFD//v01YMAAd0cBgALBzWwBACgg+/bt0/Lly7Vr1y7dfvvt7o4DAAAAAAAAi3E7MgAACsjq1as1ffp0RUZGZrkcHwAAAAAAAL6H25EBAAAAAAAAAABYgNuRAQAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFgg0N0BvEF6errS0tLk7+8vPz8/d8cBAAAAAEsZY5Senq7AwED5+1vz2T1vOc9iLAAAAJCd3L5PpAiTC2lpadq2bZu7YwAAAABAgapdu7aCgoIs6dvbzrMYCwAAAGQnp/eJFGFyIaOKVbt2bQUEBLg5DQAAAABYy263a9u2bZZd+SF5z3kWYwEAAIDs5PZ9IkWYXMi4HDwgIIA3xAAAAABuGlbeGsvbzrMYCwAAAGQnp/eJ1n2UBwAAAAAAAAAA4CZGEQYAAAAAAAAAAMACFGFcxJ5uz197u8l/hhwi5DfjlW3kL2eBZHRBH1ZvwxsyuqoPq/v3hrEsiIxwDW/ZJ70Bxw0AAAAAAADfCeMyAf4Bik+Ml+24zem291a7V+NajVN8vGRzvrkkKTJSSkiwLqOU/5wFkTGyTKQS4nLYiAvkJ6c3ZJQKJqc3ZJS8Y77hGt6yT3oDjhsAAFwrPT1dKSkp7o6BfCpUqBDf+wMAwE2GIowL2Y7blHQkyel21UtXv9LeJiU539wpec0oFVzO/GQsSN6Qk4yu4y05kX/MteswlgAAuEZKSor27dun9PR0d0eBC4SEhCg0NDTHL/EFAAC+gSIMAAAAAAAeyhijP//8UwEBAapYsaL8/bmruLcyxig5OVnHjh2TJJUrV87NiQAAQEGgCAMAAAAAgIdKS0tTcnKyypcvr2LFirk7DvKpaNGikqRjx46pbNmy3JoMAICbAB+hAQAAAADAQ9ntdklSUFCQm5PAVTKKaampqW5OAgAACgJFGAAAAAAAPBzfH+I7mEsAAG4uFGEAAAAAAAAAAAAsQBEGAAAAAAB4lenTp6tbt26SpMTERLVq1SpX7b744gudPHkySx8AAABWoQgDAAAAAICXsafbfXp7zmjfvr2WLVuW43qHDx/W4MGDdfHiRUlSz549NX36dKvjAQCAm1yguwMAAAAAAADnBPgHKD4xXrbjNsu3FVkmUglxCZZvJ6+KFCmiIkWK5LieMSbTz7fccotVkQAAABwowgAAAAAA4IVsx21KOpLk7hjZOnTokO6++25NnjxZEydO1MWLF9WxY0cNGzZMs2bNks1m09mzZ7V79269/fbbqlOnjiZOnKh//etfkqRmzZppxIgRCgkJkSTt2bNHI0eO1I4dOxQdHa0777zTsa3ExES9/fbbWr16tSTp559/1oQJE7Rjxw6FhoZq4MCBuu+++3T33XdLku6++25NmDBBhw8f1vr16/XBBx9IkpKSkjRx4kTZbDaVKlVKvXr10mOPPSZJGjZsmEqUKKGjR4/q22+/VUhIiP7xj3+oY8eOkqQff/xRr7/+un777TeVLVtWvXr10qOPPloQQw0AADwctyMDAAAAAACWePvtt/XPf/5Tb7/9tr766ivH7b/+85//6P7779f777+vqKgoTZ06Vdu3b9c777yjhQsX6sKFCxo0aJAkKSUlRb1791bFihWVmJiotm3basmSJdlu7+TJk+rZs6ciIyO1YsUK9enTRy+++KJ27typpUuXSpKWLl2q9u3bZ2q3d+9ede/eXQ0aNFBiYqIGDBigN954Q19//bVjnYSEBNWsWVOrVq1SmzZtNGrUKJ0/f152u12DBw9Wu3bt9MUXX2jQoEEaM2aM9uzZY8WQAgAAL8OVMAAAAAAAwBJDhw5V/fr1JUmDBg3S5MmT9dhjj6l06dKOq0wuXryoDz/8UMuXL1dERIQkaeLEiYqNjdWuXbv0559/6syZMxo9erSKFSumO+64Q+vXr9epU6eybO+zzz5TiRIlNGLECPn7+6tq1ao6e/asLl26pNKlS0uSSpUqleX2ZR9//LFq1KihIUOGSJKqVq2qvXv3at68ebrnnnskSREREerVq5fjd1m4cKF2796tqlWr6syZMypdurTCwsIUFhamsmXLqkyZMhaMKAAA8DYUYQAAAAAAgCXq1q3r+P9atWrp1KlTOn36tCpUqOB4/ODBg0pNTc1y+6709HTt379fBw8eVOXKlVWsWDHHstq1a2vNmjVZtrdv3z7VqFFD/v7//8YfPXr0kHTlFmnXs3fvXkVFRWV6LCYmRosXL3b8XLlyZcf/BwcHS5LS0tIUEhKixx57TCNGjNDMmTPVsmVLPfTQQypRosR1twcAAG4eFGEAAAAAAIAlChUq5Pj/9PR0SZK/v78KFy7seNxut0uSFi1alKnQIkm33XabFi9eLGPMdfu9WmBg3v7McXWeq/NmZLveNjNyjR49WvHx8frmm2/0zTffaMmSJZo5c6aaN2+epzwAAMB38J0wAAAAAADAEjabzfH/27dvV9myZRUSEpJpnYoVKyogIEBnzpxRpUqVVKlSJQUHB2vChAk6efKkqlWrpv379+v8+fPZ9nu1ypUra9euXZmKNoMHD9a8efPk5+d33ZxVqlTR1q1bMz2WlJSkKlWq5Pg7Hj9+XGPGjFGlSpX0zDPPaPny5WrUqJFWr16dY1sAAOD7KMIAgA+wp9tzXsnC9oA3csV+z7EDV2KfBOCLxo0bp23btmnt2rWaNm2a4uPjs6wTHByshx9+WKNHj9ZPP/2kPXv26IUXXtCBAwcUFhamJk2aqFy5cho+fLj27t2rxMREff7559lu74EHHtCZM2c0ceJE7d+/X4mJifrPf/6jpk2bqmjRopKknTt36q+//srU7vHHH5fNZtPUqVO1b98+rVixQosWLco277VKlCihr7/+WuPHj9fvv/+uDRs2aOfOnapRo0YeRgwAAPgabkcGAD4gwD9A8Ynxsh3P/hOBNxJZJlIJcQkWpAI8W36OG4ljB67HPgnAWZFlIj1+O+3bt1efPn2Unp6uxx57TL1799aMGTOyrDds2DC98cYbGjhwoFJTU9WgQQPNnTtXAQEBCggI0Jw5czRixAh16tRJERERio+P1/bt27P0U7x4cc2ZM0fjx4/XBx98oIoVK2rKlCmKjLzyO3To0EGDBw/W888/n6ld+fLlNWfOHE2cOFELFixQ+fLlNWzYMD300EM5/o5BQUGaOXOmxo8frw4dOuiWW25R586d9fDDD+dx1AAAgC+hCAMAPsJ23KakI0nujgF4FY4beBr2SQC5ZU+3F2jh1Z5uV4B/gNPt7rvvPvXp0yfTYwMGDMiyXtGiRTV69GiNHj06234qVqyo999/P9tlcXFxiouLc/wcExOjpUuXZrvupEmTNGnSpGyXNW7cWCtWrMh22euvv57lsV27djn+PyoqSosXL862LQAAuLlxOzIAAAAAALxMXgoi3rQ9AAAAX0ERBgAAAAAAAAAAwALcjgwAAAAAALhUWFhYptt1AQAA3Ky4EgYAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARBgAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAHiliIgI/fTTT+6OAQAAcF2B7g4AALg52NPtCvAPcHsfviC/48A4AgDg/ex2KaAAX84Lenu59d///lclSpRwdwwAAIDroggDACgQAf4Bik+Ml+24LU/tI8tEKiEuwcWpvFN+xpJxBADANwQESPHxki1vb62cEhkpJXjo24cyZcq4OwIAAMANUYQBABQY23Gbko4kuTuGT2AsAQCAzSYlefDbgYULF+rdd9/ViRMnVK1aNb388suqX7++fv75Z02YMEE7duxQaGioBg4cqPvuu0+SlJSUpIkTJ8pms6lUqVLq1auXHnvsMUnSsGHDJEk7duzQ8ePH9dFHH6lt27ZauHChYmNj1apVKz311FP65JNPZLPZVLVqVY0bN061atWSJB08eFAjR45UUlKSbr/9dnXs2FEJCQlavXq1UlNTNWbMGH399ddKSUlRbGysxowZo7/97W/uGTwAAOAz+E4YAAAAAADgUjt27NDEiRM1atQoffHFF6pfv74GDx6skydPqmfPnoqMjNSKFSvUp08fvfjii9q5c6f27t2r7t27q0GDBkpMTNSAAQP0xhtv6Ouvv3b0+8knn2jw4MGaM2eOKleunGW706dPV+/evfXpp5/q1ltv1WuvvSZJSktLU58+fVS8eHEtX75cvXv31ttvv+1ol5CQoA0bNmjBggVatmyZ/vrrL40fP97ycQIAAL6PK2EAAAAAAIBLHT58WH5+fipfvrzCwsI0ePBgtWzZUp999plKlCihESNGyN/fX1WrVtXZs2d16dIlrVixQjVq1NCQIUMkSVWrVtXevXs1b9483XPPPZKk2rVrq1WrVtfdbqdOndS6dWtJUo8ePTRo0CBJ0rp16/Tnn3/q448/VnBwsO688079+uuv+uyzzyRJhw4dUuHChVWhQgWFhITo9ddf15kzZywcIQAAcLPgShgAAAAAAOBSd911l8LDw/XAAw+oU6dOWrBggapWrap9+/apRo0a8vf//3+O6NGjh+rUqaO9e/cqKioqUz8xMTHau3ev4+cKFSrccLtXXx0THBys1NRUSdKuXbtUpUoVBQcHO5bXqVPH8f9dunTR8ePHddddd6lnz55as2aN7rjjjrz86gAAAJlQhAEAAAAAAC5VtGhRLV26VO+//74aNmyoxMRExcXFOYoi2SlcuHCWx9LT02W322+4ztUKFSqU7eMBAQEyxmR67Oqfq1WrptWrV2vSpEkqU6aMpk6dqp49e2ZpAwAA4CxuRwYAAAAAAFwqKSlJ69at0zPPPKNGjRrpueeeU5MmTRQaGqr169fLGCM/Pz9J0uDBg1WrVi1VqVJFGzZsyNJPlSpV8p2nWrVq2r9/vy5cuOC4GuaXX35xLF+5cqWCgoLUvn173XvvvdqyZYu6dOmikydPqnTp0vnePgAAuHlxJQwAAAAAAHCpIkWKaMaMGVq6dKkOHTqkzz77TMnJyWratKnOnDmjiRMnav/+/UpMTNR//vMfNW3aVI8//rhsNpumTp2qffv2acWKFVq0aJHi4+Pznadx48YqV66cRo4cqb179+rf//63Fi5c6Fh+/vx5jRs3Tj/++KMOHjyof/3rXwoNDVXJkiXzvW0AAHBz40oYAAAAAAC8UGSk524nMjJS48aN08yZMzV27FiVL19ekyZNUkxMjObMmaPx48frgw8+UMWKFTVlyhRF/t9G5syZo4kTJ2rBggUqX768hg0bpoceeijfv4O/v7+mT5+ukSNH6sEHH1TVqlUVFxen77//XpIUHx+vI0eOaOjQoTp79qxq1aqlWbNmKSAgIN/bBgAANzeKMAAAAAAAeBm7XUpIKNjtOVuPePDBB/Xggw9meTwmJkZLly7Ntk3jxo21YsWKbJe9/vrrWR7btWuX4/9Xr16daVlsbKxj+cmTJ/XHH39o0aJFjuXz5s1T2bJlJV0p0gwdOlRDhw7N4bcCAABwDrcjAwAAAADAyxT0BRq+cEHIM888o0WLFunw4cNau3at3n//fbVr187dsQAAgI/jShgAAAAAAODTbrvtNr355puaNm2aJkyYoNKlS6tr1656/PHH3R0NAAD4OIowAAAAAADA57Vu3VqtW7d2dwwAAHCT4XZkAAAAAAAAAAAAFqAIAwAAAACAhzPGuDsCXIS5BADg5kIRBgAAAAAADxUQECBJSklJcXMSuEpycrIkqVChQm5OAgAACgLfCQMAAAAAgIcKDAxUsWLFdPz4cRUqVEj+/nyW0lsZY5ScnKxjx44pJCTEUWADAAC+jSIMAAAAAAAeys/PT+XKldO+fft04MABd8eBC4SEhCg0NNTdMQAAQAGhCAMAAAAAgAcLCgpStWrVuCWZDyhUqBBXwAAAcJOhCAMAAAAAgIfz9/dXkSJF3B0DAAAATuJmsgAAAAAAAAAAABagCAMAAAAAAAAAAGABijAAAAAAAAAAAAAWoAgDAAAAAAAAAABgAYowAAAAAAAAAAAAFqAIAwAAAAAAAAAAYAGKMAAAAB7Knm73iD6s3kZBZAQAAAAAwB0C3R0AAAAA2QvwD1B8Yrxsx215ah9ZJlIJcQkuTpVVfnIWVEYAAAAAANyBIgwAAIAHsx23KelIkrtj5MhbcgIAAAAAUJC4HRkAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgx8SmhwqOz2/PWR3/YAAAAAAAAAAEhSoLsDAK4UUiREAQFSfLxksznfPjJSSkhwfa6rZRSKAgLy148r+gAAAAAAAAAAWIciDHySzSYlJbk7RfbyWyiSCqZYBAAAAAAAAADIH4owgJt4cqEIAAAAAAAAAJB/fCcMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAMhWaHCo7Pb89ZHf9gAAAAAAAADgzQLdHQCAZwopEqKAACk+XrLZnG8fGSklJLg+FwAAAAAAAAB4C4owAG7IZpOSktydAgAAAAAAAAC8D7cjAwAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAIDPs6fb3doeAAAAAHBz4jthAAAA4PMC/AMUnxgv23Gb020jy0QqIS7BglQAAAAAAF9HEQYAAAA3Bdtxm5KOJLk7BgAAAADgJsLtyAAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARBgAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARBgAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAeK3Q4FDZ7fnrI7/tAQAAAAAAAOB6At0dAADyKqRIiAICpPh4yWZzvn1kpJSQ4PpcAAAAAAAAACBRhAHgA2w2KSnJ3SkAAAAAAAAAIDNuRwYAAAAAAAAAAGABijAAAAAAAAAAAAAWoAgDAAAAAAAAAABgAYowAAAAAAAAAAAAFqAIAwAAAAAAAAAAYAGKMAAAAAAAAAAAABagCAMAAAAAAAAAAGABijAAAAAAfIo93e7W9gAAAACQIdDdAQAAAADAlQL8AxSfGC/bcZvTbSPLRCohLsGCVAAAAABuRhRhAAAAAPgc23Gbko4kuTsGAAAAgJsctyMDAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGACwUGhwqOz2/Pfjij4AAAAAAAAAFKxAdwcAAF8WUiREAQFSfLxks+Wtj8hIKSHBtbkAAAAAAAAAWI8iDAAUAJtNSkpydwoAAAAAAAAABYnbkQEAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWCDQ2QZr167VDz/8oF9++UWnTp2Sn5+fypQpoxo1aujvf/+7GjZsaEVOAAAAAAAAAAAAr5LrIsyKFSs0e/Zs/fXXX2rcuLGaNm2qkJAQpaen6/Tp09q1a5eef/55FStWTL169dJDDz1kZW4AAAAAAAAAAACPlqsiTLdu3RQWFqZJkyYpKirqhuuuX79eS5YsUWJiohISElwSEgAAAAAAAAAAwNvkqggzZswYVa1aNVcdNmzYUA0bNtTevXvzFQwAAAAAAAAAAMCb+edmpesVYM6ePav09HQZY7Isu+OOO/KXDAAAAAAAAAAAwIvlqghzNWOMZs2apdjYWDVu3FiHDx/W0KFD9corryglJcWKjAAAAAAAAAAAAF7H6SLMjBkz9Omnn+r1119XUFCQJKlTp0763//+p4kTJ7o8IAAAAAAAAAAAgDdyugizYsUKjR07Vi1btpSfn58kqWnTpnrjjTf0xRdfuDwgAMBaocGhstvz348r+gAAAAAAAAB8SaCzDU6ePKmyZctmebx48eJKTk52SSgAQMEJKRKigAApPl6y2fLWR2SklJDg2lzXyigWBQTkvY/8ts+JN2QEAAAAAABAwXG6CNOoUSPNnz9fY8eOdTx24cIFTZ06VbGxsS4NBwAoODablJTk7hTXl99iUUEUirwhIwAAAAAAAAqO00WY0aNHq3///mratKkuX76sZ599Vn/88YfKly+vWbNmWZERAAAHTy8WSd6REQAAAAAAANZzuggTGhqqZcuW6ccff9Rvv/2mtLQ0ValSRXfddZf8/Z3+ihkAAAAAAAAAAACf5HQRJkPjxo3VuHFjV2YBAAAAAAAAAADwGU4XYapXry4/P7/rLrfl9VudAQAAAAAAAAAAfIjTRZiFCxdm+tlut+v333/Xu+++q8GDB7sqFwAAAAAAAAAAgFdzugjTsGHDLI81btxYlStX1oQJE9SuXTuXBAMAAAAAAAAAAPBm/q7qqFSpUvrtt99c1R0AAAAAAAAAAIBXc/pKmJUrV2Z57K+//tKyZctUp04dF0QCAAAAAAAAAADwfk4XYd56661MP/v5+alQoUKqXbs23wkDAAAAAAAAAADwf5wuwqxevdqKHAAAAAAAAAAAAD4lV0WYDRs25LrDBg0a5DkMAAAAAAAAAACAr8hVEaZbt2656szPz082my1fgQAAAAAAAAAAAHxBroowO3futDoHAAAAAAAAAACAT3H6O2EkKS0tTSdPnpTdbpckGWOUkpIim82m9u3buzQgAAAAAAAAAACAN3K6CPPNN99o5MiROnPmTJZlZcqUoQgDAAAAAAAAAAAgyd/ZBlOmTNE999yjzz77TMWLF9fixYs1e/ZsVahQQYMHD7YgIgAAAAAAAAAAgPdx+kqYgwcPas6cObr99ttVq1YtHT9+XK1bt5a/v78mTpyouLg4K3ICAAAAAAAAAAB4FaevhClevLguXrwoSapSpYp27twpSapataoOHTrk2nQAAAAAAAAAAABeyukiTPPmzTVmzBjt2bNHsbGx+uSTT/TLL79oyZIlKlu2rBUZAQAAAAAAAAAAvI7TRZjhw4erUqVK2r59u1q3bq3o6Gh17txZCQkJevHFF63ICAAAXCQ0OFR2e/77cUUf1+MNGQEAAAAAAHLD6e+ECQoK0oQJExw/T548WaNHj1bhwoVVqFAhl4YDAACuFVIkRAEBUny8ZLPlrY/ISCkhwbW5ruYNGQEAAAAAAHLD6SJM48aN1bp1a7Vv315NmzZVYGCggoODrcgGAAAsYrNJSUnuTnFj3pARAAAAAADgRpy+Hdm0adNUuHBhvfzyy2ratKmGDx+utWvXKj093Yp8AAAAAAAAAAAAXsnpIsxdd92lsWPH6ocfftBbb72lokWLavjw4WrWrJnGjh1rRUYAAAAAAAAAAACv4/TtyDL4+/urXr16unTpkux2uz755BN9//33rswGAAAAAAAAAADgtZwuwly+fFnff/+9vvzyS61Zs0bFihVTu3bt9O677yo6OtqKjAAAAAAAAAAAAF7H6SJMbGysihUrpnvuuUczZsxQgwYN5OfnZ0U2AAAAAAAAAAAAr+V0EWb69Olq0qSJAgICrMgDAAAAAAAAAADgE5wuwjRr1syKHAAAAAAAAAAAAD7F390BAAAAAAAAAAAAfBFFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALCA098JI0lLly7VkiVLtHfvXvn7+ysiIkJdu3ZV+/btXZ0PAAAAAAAAAADAKzldhJk9e7bmzZun7t27q1+/frLb7dq2bZtGjhypM2fO6PHHH7ciJwAAAAAAAAAAgFdxugjz4Ycf6o033tDdd9/teKx169aqUaOGJkyYQBEGAAAAAAAAAABAefhOmNTUVFWoUCHL41WrVtVff/3lklAAAAAAAAAAAADezukiTP/+/TVixAj9+uuvjsf++OMPvf766+rXr59LwwEAAAAAAAAAAHgrp29HNm/ePJ08eVIPPvigihUrpsDAQJ07d07GGK1du1ZvvPGGY12bzebSsAAAAJ4iNDhUdrsUEJD3PvLbHgAAAAAAeDanizCTJk2yIgcAAIBXCSkSooAAKT5eysvnTiIjpYQE1+cCAAAAAACeI1dFmH379qlKlSqSpIYNG+aq499++y3vqQAAALyEzSYlJbk7BQAAAAAA8ES5KsK88sorCgsL02OPPaaoqKgbrrtx40YtXrxYf/75pxL4eCcAAAAAAAAAALhJ5aoI88EHHygxMVHPP/+8Ll26pMaNG+uOO+5QyZIlZbfbdebMGe3atUubN29W4cKF1atXL3Xu3Nnq7AAAAAAAAAAAAB4r198JExcXp7i4OP3www/673//qx9++EGnTp2Sn5+fbrvtNtWoUUMTJkxQo0aN5O/vb2VmAAAAAAAAAAAAj5frIkyGZs2aqVmzZlZkAQAAAAAAAAAA8BlOF2FWrlx53WVBQUEqU6aMoqOjFRQUlJ9cAAAAAAAAAAAAXs3pIkxiYqI2btyowoULq0qVKjLG6MCBA7p48aLKly+vc+fO6dZbb9U777yjO+64w4rMAAAAAAAAAAAAHs/pL28JDw9X8+bNtWbNGiUmJmrFihX6/vvvdc8996ht27Zat26dWrZsqfHjx1uRFwAAAAAAAAAAwCs4XYRZuXKlnn/+eRUvXtzxWHBwsAYNGqSPP/5YAQEBeuKJJ7R582aXBgUAAAAAAAAAAPAmThdhihUrpr1792Z5/LfffnN8D0xycrKKFCmS/3QAAAAAAAAAAABeyunvhOnZs6defvll/frrr6pVq5aMMfrll1/0/vvv66mnntKRI0c0atQoNW/e3Iq8AAAAAAAAAAAAXsHpIsyTTz6pUqVKadGiRZo/f74CAwN15513asyYMWrfvr02bNigmJgYDRo0yIq8AAAAAAAAAAAAXsHpIowkdejQQR06dMh2WYMGDdSgQYN8hQIAAAAAAAAAAPB2eSrCfPPNN5o3b55+++032e12ValSRV27dlXHjh1dHA8AAAAAAAAAAMA7OV2EWbx4sd544w117dpVvXv3Vnp6ujZv3qwxY8YoNTVVDz/8sBU5AQAAAAAAAAAAvIrTRZh58+Zp1KhRma56ad26tapVq6bZs2dThAEAAAAAAAAAAJDk72yDkydPqk6dOlkej4mJ0Z9//umKTAAAAAAAAAAAAF7P6SJMZGSkVq5cmeXxFStW6M4773RFJgAAAAAAAAAAAK/n9O3Ihg4dqieffFI//fSToqOjJUlbtmzRzp07NXv2bJcHBAAAAAAAAAAA8EZOXwkTExOjxMRERUVFae/evTp06JAaNGigL774Qo0aNbIiIwAAAAAAAAAAgNdx+koYSbrjjjv00ksvuToLAAAAAAAAAACAz8hVEaZbt27y8/PLVYcLFy7MVyAAAAAAAAAAAABfkKsiTGxsrNU5AAAAAAAAAAAAfEquijD9+/fP9vFNmzapdu3aCgoKcmkoAAAAAAAAAAAAb+efn8a9evXS0aNHXZUFAAAAAAAAAADAZ+SrCGOMcVUOAAAAAAAAAAAAn5KvIgwAAAAAAAAAAACyl68iTN++fVWiRAlXZQEAAAAAAAAAAPAZgflp3KdPH1flAAAAAAAAAAAA8CncjgwAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARBgAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARBgAAAAAAAAAAwAIUYQAAAHxUaHCo7Pb89ZHf9gAAAAAA3MwC3R0AAAAA1ggpEqKAACk+XrLZnG8fGSklJLg+FwAAAAAANwuKMAAAAD7OZpOSktydAgAAAACAmw+3IwMAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAgNuEBofKbs9/P67oAwAAAAAAVwt0dwAAAADcvEKKhCggQIqPl2y2vPURGSklJLg2FwAAAAAArkARBgAAAG5ns0lJSe5OAQAAAACAa3E7MgAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAA4AZCg0Nlt+e/H1f0cSOuyGl1RgAAAAC42QS6OwAAAADgyUKKhCggQIqPl2y2vPURGSklJLg217Xym7MgMgIAAADAzYYiDAAAAJALNpuUlOTuFDnzlpwAAAAAcDPgdmQAAAAAAAAAAAAW8IgizKxZs1SrVq3rLm/Tpo1Gjhx53eWbNm1SRESENm/efN11RowYobZt2+YrJwAAAAAAAAAAQG65tQhz4MABSVKJEiVUvHhxSVJycrKOHTumc+fO6dSpU1mWHzhwQMYYSdLBgwdlt9sVEhLiWM9ut+vgwYM33MaZM2d0+vRp639BAAAAAAAAAABw03JbEeb06dNq3769OnbsqG3btqlIkSIaNWqUmjZtqunTp2vFihX6+9//rueee05paWk6ePCgunbtqjZt2ijp/25yPWDAALVo0UIrVqyQJK1cuVItWrTQ008/LUnauXOn2rRpo65duzoKNs8995zuuusuLVmyxF2/OgAAAAAAAAAAuAkEunPjQ4cO1ebNm/XVV1/pwoUL2rRpk9q1a6eWLVuqdOnS6tGjhzZu3KgdO3Zoz549qlOnjvr06aPSpUtLkp544glt3LhRq1atknSlCFOnTh01atRIdrtdJUqU0HPPPadNmzbp22+/VUpKivz8/PTQQw+pXr167vzVAQAAAAAAAACAj3NbEaZkyZJ68sknVaNGDX333XcKCwtTaGioxo4dq0KFCkmSoqKiNGrUKP355586ceKE4uLi1KlTJ0cfcXFxatasmX766SeFhYXJGKOXX35Z5cqVkySVK1dOvXv31qpVq7R27VqFhoaqevXqGjNmjFt+ZwAAAAAAAAAAcPNw65UwBw8e1IABA9SkSRMNGDBAnTt31qhRozR+/HhJ0nvvvafFixdr+vTp2rBhg0aMGKHQ0FA1btxYkpSSkqJnn31Wly9f1sqVKxUXF6c+ffpo8eLFKlasmCRp69ateumll9SlSxc1atRI/fr1U/ny5dWvXz+n86akpCggIOC6y9PT0qU058fBnmpXSkqK0tOdb+vYdrqUkpKL9fKYUcp/Tl/KKDHfOW7bhzJKvj3f3pBRYp/Msq4Pz7c3ZJTYJ7Os68Pz7Q0ZpYKdb2+Q17FMT0tXii8NRB7Z7fYC21ZO51nuxlgAAAAgO7l9n+jWIkzJkiXVunVr9e3bVxUrVlS/fv1UvXp1x/J69erp0UcfVZs2bdSkSROdOnVKlStXdiwvVKiQ2rZtqwoVKqh06dIaPXq0duzYocKFCzvWqVChgtq2bauBAweqePHi6tq1q2JjY/OUd8qUKUpLu/6Z3NGNR6ULzve7Y9cOjd85XkeP5inWlW0flf6vdnXj9fKYUcp/Tl/KKDHfOW7bhzJKvj3f3pBRYp/Msq4Pz7c3ZJTYJ7Os68Pz7Q0ZpYKdb2+Q17E8GnxU44/70EDkUWBgoO69994C2VZO51nuxlgAAAAgO7l9n+jWIkxwcLDGjRvn+Ll///6ZlteuXVu1a9d2rDtlypRMy/38/PT00087fm7VqpVatWqVaZ3SpUtr8uTJjp9HjhzpsvwAAAAAAAAAAADX42eMMe4O4ensdru2bNmiGjVq3PDS8IbvNNTWI1ud7v+Rmo/og7gP1LChtNX55pKk6Ghp/fqc18trRin/OX0po8R858SXMkq+Pd/ekFFin7yWL8+3N2SU2Cev5cvz7Q0ZpYKdb2+Q17GMDo3W+l4+NBB5ZLfbtWPHDtWpU8ey22Pl9jzL3RgLAAAAZCe37xPdeiWMtwkKCrrhYPoH+udpRAMKBSgoKEj+/nnP5u8vBQXlYr08ZpTyn9OXMkrMd47b9qGMkm/PtzdklNgns6zrw/PtDRkl9sks6/rwfHtDRqlg59sb5HUs/QP9FeRLA5FHBfk9KDmdZ7kbYwEAAIDs5PZ9Yj5OJQEAAAAAAAAAAHA9FGEAAAAAFJj8XlRQgBclAAAAAEC+cTsyAAAAAAUmIECKj5dsNufbRkZKCQmuzwQAAAAAVqEIAwAAAKBA2WxSUpK7UwAAAACA9bgdGQAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFjAa4ows2bNUq1ata67vE2bNho5cuR1l2/atEkRERHavHmzFfEAAAAAAAAAAAAy8fgizIEDByRJJUqUUPHixSVJycnJOnbsmM6dO6dTp05lWX7gwAEZYyRJBw8elN1uV0hIiGM9u92ugwcPFvBvAgAAAAAAAAAAbiaB7g5wI6dPn1b79u1VrVo1RUZGqkiRIho1apQ+/fRT3X///brzzjs1adIktW3bVmlpaTp48KC6du2qDRs26KOPPlLdunU1YMAAnTx5Ug8++KAkaeXKlVq5cqWKFSumL7/80s2/IQAAAAAAAAAA8FUeXYSRpKFDh2rz5s366quvdOHCBW3atEnt2rVTy5YtVbp0afXo0UMbN27Ujh07tGfPHtWpU0d9+vRR6dKlJUlPPPGENm7cqFWrVkm6UoSpU6eOGjVqJLvdroCAAHf+egAAAAAAAAAAwEd5dBGmZMmSevLJJ1WjRg199913CgsLU2hoqMaOHatChQpJkqKiojRq1Cj9+eefOnHihOLi4tSpUydHH3FxcWrWrJl++uknhYWFyRijl19+WeXKlXPXrwUAAAAAAAAAAG4CHl2Eka58p8uAAQPUpEkTDRgwQJ07d9aoUaM0fvx4SdJ7772nxYsXa/r06dqwYYNGjBih0NBQNW7cWJKUkpKiZ599VpcvX9bKlSsVFxenPn36aPHixSpWrJhTWVJSUm545Ux6WrqU5vzvaE+1KyUlRenpzrd1bDtdSknJxXp5zCjlP6cvZZSY7xy37UMZJd+eb2/IKLFPZlnXh+fbGzJK7JNZ1vXh+faGjFLBznd+efI+mZ6WrpSCGggPZrfbC2xbOZ1nuRtjAQAAgOzk9n2ixxdhSpYsqdatW6tv376qWLGi+vXrp+rVqzuW16tXT48++qjatGmjJk2a6NSpU6pcubJjeaFChdS2bVtVqFBBpUuX1ujRo7Vjxw4VLlzY6SxTpkxRWtr1z+SObjwqXXC6W+3YtUPjd47X0aPOt3Vs+6j0f3WpG6+Xx4xS/nP6UkaJ+c5x2z6UUfLt+faGjBL7ZJZ1fXi+vSGjxD6ZZV0fnm9vyCgV7Hznlyfvk0eDj2r88QIaCA8WGBioe++9t0C2ldN5lrsxFgAAAMhObt8nenwRJjg4WOPGjXP83L9//0zLa9eurdq1azvWnTJlSqblfn5+evrppx0/t2rVSq1atbIwMQAAAAAAAAAAgORnjDHuDuHp7Ha7tmzZoho1atzw0vCG7zTU1iNbne7/kZqP6IO4D9SwobTV+eaSpOhoaf36nNfLa0Yp/zl9KaPEfOfElzJKvj3f3pBRYp+8li/PtzdklNgnr+XL8+0NGaWCne/88uR9Mjo0Wut7FdBAeDC73a4dO3aoTp06lt0eK7fnWe7GWAAAACA7uX2f6PFXwniSoKCgGw6mf6B/nkY0oFCAgoKC5O+f92z+/lJQUC7Wy2NGKf85fSmjxHznuG0fyij59nx7Q0aJfTLLuj48396QUWKfzLKuD8+3N2SUCna+88uT90n/QH8FFdRAeLCC/B6UnM6z3I2xAAAAQHZy+z4xH6eSAAAAAAAAAAAAuB6KMAAAAAAAAAAAABagCAMAAAAAAAAAAGABijAAAAAAAAAAAAAWoAgDAAAAAAAAAABgAYowAAAAAAAAAAAAFqAIAwAAAAAAAAAAYAGKMAAAAAAAAAAAABagCAMAAAAAAAAAAGABijAAAAAAAAAAAAAWoAgDAAAAAAAAAABgAYowAAAAAAAAAAAAFqAIAwAAAAAAAAAAYAGKMAAAAAAAAAAAABagCAMAAAAAAAAAAGABijAAAAAAAAAAAAAWoAgDAAAAAAAAAABgAYowAAAAAPB/QoNDZbfnvx9X9AEAAADA+wW6OwAAAAAAeIqQIiEKCJDi4yWbLW99REZKCQmuzQUAAADAO1GEAQAAAIBr2GxSUpK7UwAAAADwdtyODAAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAAAAAAAAAAAAs4FNFmFmzZqlWrVrXXd6mTRuNHDmyABMBAAAAAAAAAICblU8UYQ4cOCBJKlGihIoXLy5JSk5O1rFjx3Tu3DmdOnUqy/IDBw7IGOOewAAAAAAAAAAAwOcFujtAfp0+fVrt27dXtWrVFBkZqSJFimjUqFH69NNPdf/99+vOO+/UpEmT1LZtW6WlpengwYPq2rWrNmzYoI8++kh169Z1968AAAAAAAAAAAB8kE9cCTN06FDdfvvt+uqrr3T48GFt2rRJ7dq1U8uWLRUTE6MePXrojz/+0I4dO/Ttt9/Kz89Pffr0UenSpd0dHQAAAAAAAAAA+CivvxKmZMmSevLJJ1WjRg199913CgsLU2hoqMaOHatChQpJkqKiojRq1Cj9+eefOnHihOLi4tSpUyc3JwcAAAAAAAAAAL7M64swknTw4EENGDBATZo00YABA9S5c2eNGjVK48ePlyS99957Wrx4saZPn64NGzZoxIgRCg0NVePGjZ3aTkpKigICAq67PD0tXUpzPr891a6UlBSlpzvf1rHtdCklJRfr5TGjlP+cvpRRYr5z3LYPZZR8e769IaPEPpllXR+eb2/IKLFPZlnXh+fbGzJKBTvf+cU+6fnsdnuBbSun8yx3YywAAACQndy+T/SJIkzJkiXVunVr9e3bVxUrVlS/fv1UvXp1x/J69erp0UcfVZs2bdSkSROdOnVKlStXdno7U6ZMUVra9c/kjm48Kl1wPv+OXTs0fud4HT3qfFvHto9K/1dzuvF6ecwo5T+nL2WUmO8ct+1DGSXfnm9vyCixT2ZZ14fn2xsySuyTWdb14fn2hoxSwc53frFP5l96uuSfz5tL36iPwMBA3XvvvfnbQC7ldJ7lLFeMzdX8/QN1333eORYAAACwTm7fM/tEESY4OFjjxo1z/Ny/f/9My2vXrq3atWs71p0yZUqB5gMAAAAAV/L3l5Yvl06cyFv70qWlhx5ybSZPkd+xuVrp0lKXLvnvBwAAADcvP2OMcXcIT2e327VlyxbVqFHjhpeGN3ynobYe2ep0/4/UfEQfxH2ghg2lrc43lyRFR0vr1+e8Xl4zSvnP6UsZJeY7J76UUfLt+faGjBL75LV8eb69IaPEPnktX55vb8goFex85xf7pGtYmdFut2vHjh2qU6eOZbfHyu15Vl7kZ2yuFh0t/fijd48FAAAArJHb98w+cSVMQQkKCrrhYPoH+udpRAMKBSgoKChfl8z7+0tBQblYL48Zpfzn9KWMEvOd47Z9KKPk2/PtDRkl9sks6/rwfHtDRol9Msu6Pjzf3pBRKtj5zi/2SdewMmNBfg9KTudZeeGq25FdGSfvHgsAAABYI7fvmV14p1wAAAAAAAAAAABkoAgDAAAAAAAAAABgAYowAAAAAAAAAAAAFqAIAwAAAAAAAAAAYAGKMAAAAAByxZ5ecF9QDgAAAAC+INDdAQAAAAB4hwD/AMUnxst23Jan9vdWu1fjWo1zcSoAAAAA8FwUYQAAAADkmu24TUlHkvLUtnrp6i5OAwAAAACejduRAQAAAAAAAAAAWIAiDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAAAAACABSjCAAAAAAAAAAAAWOCmKsLMmjVLtWrVcncMAAAAAAAAAABwE7gpijAHDhyQJJUoUULFixeXJCUnJ+vYsWPujAUAAAAAAAAAAHyYzxdhTp8+rfbt26tjx47atm2bihQpolGjRqlp06aaPn26u+MBAAAAAAAAAAAf5fNFGEkaOnSobr/9dn311Vc6fPiwNm3apHbt2qlly5bujgYAAAAAAAAAAHxUoLsDWK1kyZJ68sknVaNGDX333XcKCwtTaGioxo4dq0KFCrk7HgAAAAAAAAAA8FE+X4SRpIMHD2rAgAFq0qSJBgwYoM6dO2vUqFEaP368U/2kpKQoICDgusvT09KlNOfz2VPtSklJUXq6820d206XUlJysV4eM0r5z+lLGSXmO8dt+1BGybfn2xsySuyTWdb14fn2howS+2SWdX14vr0ho8Q+mWVdL5jv/LIyo91uz3vnTsrpPCsv8jM21/aTkuLdYwEAAABr5PY9801RhClZsqRat26tvn37qmLFiurXr5+qV6/udD9TpkxRWtr1z+SObjwqXXA+345dOzR+53gdPep8W8e2j0q5qSnlNaOU/5y+lFFivnPctg9llHx7vr0ho8Q+mWVdH55vb8gosU9mWdeH59sbMkrsk1nW9fD5Tjfp8vfL392hrcwYGBioe++9N+8bcEJO51l5kZ+xubafKVO8eywAAABgjdy+Z74pijDBwcEaN26c4+f+/fu7MQ0AAACAm52/n7+W25brxF8nnG5752136u4qd1uQCgAAAICr+RljjLtDeDq73a4tW7aoRo0aN7w0vOE7DbX1yFan+3+k5iP6IO4DNWwobXW+uSQpOlpavz7n9fKaUcp/Tl/KKDHfOfGljJJvz7c3ZJTYJ6/ly/PtDRkl9slr+fJ8e0NGiX3yWr483wWR0W63a8eOHapTp45lt8fK7XlWXuRnbK4WHS39+KN3jwUAAACskdv3zDfFlTCuEhQUdMPB9A/0z9OIBhQKUFBQkPzzcTcCf38pKCgX6+Uxo5T/nL6UUWK+c9y2D2WUfHu+vSGjxD6ZZV0fnm9vyCixT2ZZ14fn2xsySuyTWdb14fkuiIwF+Z0wOZ1n5UV+xubafoKCvHssAAAAYI3cvmd20VtTAAAAAAAAAAAAXI0iDAAAAAAAAAAAgAUowgAAAAAAAAAAAFiAIgwAAAAAAAAAAIAFKMIAAAAAAAAAAABYgCIMAAAAAAA+ym73jD4AAABuVoHuDgAAAAAAAKwRECDFx0s2W97aR0ZKCQmuzQQAAHAzoQgDAAAAAIAPs9mkpCR3pwAAALg5cTsyAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAAOBWdrt72wMAAFgl0N0BAAAAAADAzS0gQIqPl2w259tGRkoJCa7PBAAA4AoUYQAAAAAAgNvZbFJSkrtTAAAAuBa3IwMAAAAAAAAAALAARRgAAAAAAAAAAAALUIQBAAAAAAAAAACwAEUYAAAAAACAHNjtntEHAADwLoHuDgAAAAAAAODpAgKk+HjJZstb+8hIKSHBtZkAAIDnowgDAAAAAACQCzablJTk7hQAAMCbcDsyAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGAAAAAAAAAAAAAtQhAEAAAAAAAAAALAARRgAAAAAgNvY0+3ujoB8Yg5dxxVjyXwAAOBZAt0dAAAAAABw8wrwD1B8Yrxsx2357uveavdqXKtxLkgFZ+R3Dpm3/y+/YxlZJlIJcQkuTgUAAPKDIgwAAAAAwK1sx21KOpKU736ql67ugjTIi/zMIfOWWX7GMjQ4VHa7FBCQ9+3ntz0AAMiMIgwAAAAAAIAPCCkSooAAKT5esuXhYprISCmBC2kAAHApijAAAAAAAAA+xGaTkvJ/cRkAAHABf3cHAAAAAAAAwM3DbveMPqzu3+qMAADvwJUwAAAAAAAAKDD5uWWaVDC3TfOGjAAA70ARBgAAAAAAAAXKG26Z5g0ZAQCej9uRAQAAAADgoezp3M/IVRhLwHe54vjmOQKAVbgSJheMMZIkew4384wuG60i/kWc7r9ayWqy2+2KjpaKON9ckhQRkbt7jeY1o5T/nL6UUWK+c+JLGSXfnm9vyCixT17Ll+fbGzJK7JPX8uX59oaMEvvktXx5vgsiY8a5T8a5kBWuPs/Kz351NVeMzdWujFPBjkV2Jnw/Qb+f/d3pfuuXr68n6zzp0fuzVLDPDYzljTkzlvlVEGOZX96Q0W6/cus0d7UvqG3kpo+8Ht+SVLNsTfWOeUYKyPuk+dJYurv/ghhLwBVy+z7Rz1j5TtJHpKSkaNu2be6OAQAAAAAFqnbt2goKCrKkb287z2IsAAAAkJ2c3idShMmF9PR0paWlyd/fX35+fu6OAwAAAACWMsYoPT1dgYGB8ve35i7W3nKexVgAAAAgO7l9n0gRBgAAAAAAAAAAwALWfIwHAAAAAAAAAADgJkcRBgAAAAAAAAAAwAIUYQAAAAAAAAAAACxAEQYAAAAAAAAAAMACFGEAAAAAAAAAAAAsQBEGAAAAAAAAAADAAhRhAAAAAAAAAAAALEARxoVSUlJ0//3366effnI89sMPP6hDhw6KiopShw4dtGbNmkxt3n33XbVo0ULR0dF66qmntH//fsey5ORkjRgxQrGxsWrQoIFGjhypv/76q8Azrl27Vvfff7+io6P1xBNP6ODBg9n2PW/ePLVq1Spf+W6Uc8uWLXr00UcVExOjtm3baunSpY5lrVq1UkRERJZ/b7/9tiTp3LlzGj58uJo0aaJGjRpp2LBhOnfunMszMt+uyXijuZakjz76SHfffbfq1q2rp556KlNGK+baW3Jy3LjvuCnojHnN6QnHtzdk5LgpuJzMt3dmvF7ODOfPn1ezZs2UmJjoeMwYo7lz56pVq1aqW7euunfvrj179mTb95gxY9StWzdLMnraWDo7jlf74osvFBER4XS/3oKxySwvz7EdOnTIsj//+uuvkqSTJ09q4MCBqlevnpo2bapJkyYpLS3Nkpze/p7ZUzJ6y3x7Wk5vyHi9nN7+muUpr/2elvF6Ob3hecjTMuYlp6ccO542lt5wLne9nBmu9/7w3//+t9q2bas6deqoZ8+eOnz4cKb+xowZowYNGqhJkyaaOnWqjDEuyZqFgUtcunTJ9OvXz4SHh5t169YZY4zZv3+/iYqKMu+++675/fffzYIFC0zNmjXNwYMHjTHGfPLJJ6ZevXrmu+++M/v27TNDhgwxbdu2Nenp6cYYY4YPH24efPBBs23bNrN9+3bToUMHM2LEiALNePjwYVOnTh0zf/588+uvv5pBgwaZ+++/35Exw++//26io6NNy5Yt85zvRjmPHTtm6tevb6ZMmWL27dtnVq1aZWrXrm2+/fZbY4wxJ0+eNMeOHXP8++CDD0y9evXMoUOHjDHGDB482MTFxTnGsnPnzmbAgAEuzch8uyZjTnP9/fffm5iYGLN69Wrz22+/mf79+5sHHnjA0aer59pbcnLcuO+4KeiMec3pCce3N2TkuCm4nMy3d2a8Xs6rjRw50oSHh5vly5c7Hlu0aJGJjY11vC6+/PLLpkWLFiY5OTlT202bNpmIiAjTtWtXl2f0tLHMyzhmOHv2rGnatKkJDw93ul9vwNhklpfn2LS0NFO7dm2zfv36TPt1amqqMcaYJ5980vTo0cPs3r3bbNiwwTRv3tzMmjXL5Tl94T2zJ2T0lvn2tJzekPF6OX3hNcsTXvs9LeP1cnrD85CnZcxrTk84djxtLL3hXO56Oa+W3TG+adMmU6NGDfPRRx+ZvXv3mj59+phHHnkkU5s2bdqYrVu3mrVr15rY2Fjz0Ucf5TtrdijCuMDu3btNhw4dzAMPPJBpR1i3bp157bXXMq3boEED89lnnxljjPnwww/N4sWLHctsNpsJDw83J06cMMYYM3r0aLNx40bH8vfff9/ce++9BZrxzTffzPQik5ycbGJiYrLs7D169DCPPvpovg+q6+VctGiRadeuXaZ1R44caYYMGZKlj3PnzplGjRqZjz/+2BhjzF9//WUiIyPNli1bHOts3rzZREZGmkuXLrksI/Ptmow5zfWrr76a6cVl586dJjw83Jw8edLlc+0tOTlu3HvcFGTG/OT0hOPbGzJy3DiP+b55nstvlDPDhg0bzD333GOaNm2a6QTo4YcfNnPmzHH8nJKSYurUqWP++9//Oh67fPmyue+++0yXLl3y9UcObxjLvI5jhuHDh5tHH300S6Ehp369AWOTWV6fY/fv32+qV6+e7f55+fJl89xzz5n9+/c7Hhs/frx5+umnXZ7TF94ze0JGb5lvT8rpDRlvlNMXXrM84bXfkzLeKKc3PA95Usb85Lyap76/94T59qRzuRvlzHC9Y7xfv35m2LBhjp9///1307JlS3Py5Elz+vRpU6NGDfPTTz85ls+ZMyfT+q7E7chcYP369YqNjdWSJUsyPR4bG6vhw4dLklJTU7V06VKlpKQoKipKkhQfH68uXbpIunLJ1KJFi1StWjWVKlVKkjRq1CjVq1dPknTo0CGtWrVKDRs2dPS/cOFCtWzZUrVr11ZcXJw2btzo8oxbt25V/fr1HesXLVpUNWvW1JYtWxyPrVy5UhcvXlTnzp2zbHfq1Km66667FBUVpW7dumn37t03GMnr52zWrJkmTJiQZf0LFy5keWz+/PkqU6aMHnroIUmSv7+/Zs+ercjIyEzr2e12x+1XnMnJfLtmvvM61yEhIdqwYYP27t2rtLQ0rVy5UhUqVFCJEiVcPtfekpPjxr3HTUFmzE9OTzi+vSEjx83NtU96w3x7UsYb5ZSuXM4/cuRIvfLKKwoKCsq07IUXXlCHDh0cP/v5+ckYo/Pnzzsemzt3riIiItS0adNMbVNTUx230IuJiVHfvn119OhRpzN60ljmdRwz2q5fv159+/Z1ql9nx9FdGJvM8vocu2fPHpUrV06FCxfO0mdQUJAmT56sSpUqSZJ2796t1atXZ3ot4D2zZ2X0lvn2pJzekPFGOX3hNcsTXvs9KeONcnrD85AnZcxPzqt56vt7T5hvTzqXu1FO6cbH+Pr163XPPfc4fq5YsaJWr16tUqVKadOmTQoODs70HN67d2/H3Jw7d04DBgxQ/fr11aBBAz3//PPZ7ke5Zklp5yaWXTVu//79JjIy0oSHh2eqsGdYunSpCQ8PN7Vq1cpUfcvwwgsvmPDwcNOyZUtz7NgxY4wxv/zyi6lZs6b59ttvzcGDB824ceNM06ZNjd1ud2nG+++/3yxatCjTuoMGDTKjR482xly5jK9p06bm119/NcuXL89U2fzqq69Mw4YNzYYNG8yBAwfM4MGDzUMPPZRjvhvlzHDixAlTt25d8+6772Z6PDk52dSrV89Rmb2ewYMHOy7ly09O5ts18+3MXJ85c8Y8/vjjJjw83ERGRpq6desam8123b5dNdfekpPjpuCPG3dldDanJx3f3pAxA8fNzbFPZvDk+fa0jNnlnDZtmuMTfC1btsz2KoUMixYtMjVr1nTse3v27DFNmjQxx48fN2+99VamT9a9++67pk2bNmb79u1mz549pmvXrmbgwIF5yng1TxlLZ8bx8uXLpk2bNuaHH34w69aty/aWW9frNz/j6C6MTWbOPMfOmTPHtGnTxvTu3ds0adLExMfHm61bt2bpMz4+3oSHh5tOnTqZv/76yxjDe2ZPzugt8+1pOb0h4/VyZvDG16xrueu13xMzZpfzap78PORpGZ3NmcHdx86NMnrSfHvauVx2Oa93jJ89e9aEh4ebr776yvTs2dM0adLE9O3b1xw5csQYc+UY7tSpk1mxYoVp27atadWqlXn77bcd576vvvqq6dKli/n111/Njh07zH333WfeeOONXOe8VmDeyzfIrVKlSmnZsmVKSkrS66+/rkqVKqlt27aO5U2aNNGKFSu0fPlyPfvss1qxYoUqVqzoWN6rVy899thjmjJlinr16qXExEQdPnxYfn5+Kl++vMLCwjR48GC1bNlS6enp8vd3/gKn62W8ePFilipiUFCQUlJSJEnjx49Xp06dVK1aNW3bti3TeocPH1ahQoVUvnx5lS9fXiNHjtRvv/3mdLZrXbp0SQMGDFDp0qUdn/TN8Pnnn6tYsWJq06bNddt/+OGH+uKLLzRv3jxLcjLfrpvv7Ob62LFjunz5suMTSDNnztTQoUO1bNmyLJ9WsnquvSknx411x40nZbxRTk86vr0ho8RxczPtk5Lnz7enZ9yzZ48WL16sTz/9NMd1t27dqjfeeENPPfWUypQpI2OMXnnlFcfvdq1Dhw6pcOHCqlChgkJCQvT666/rzJkzecqZwVPHMqdxnDFjhmrWrKm77rrL6S+Wt2IcCxJjk73rPcfu27dPZ8+e1cMPP6yBAwfq448/Vvfu3fX555+rXLlyjvYjRozQ2bNn9dprr2nIkCGaPXs275k9OKO3zLc35PSGjBm89TXrau567feGjNfy9Ochb8l4vZwZ3P3e+UYZPWksPf1c7kbHeHJysiTptdde0z/+8Q8NGjRI06ZNU58+fZSYmKjk5GQdOHBAixcv1oQJE3T8+HG98sorKlq0qHr27KnDhw/rlltuUVhYmIoWLapp06blKaNDnss3yFZO9xceM2bMde8hmZ6ebu6//37z1ltvZbv8+PHjpnr16mbdunUmOTnZxMXFmfDwcNOxY0czffp0RyXPlRnbt2+fbWXz1VdfNd9//725++67zcWLF40xJktl89ixY+buu+821atXN48++qiZN2+eOXPmTK4yXi/nhQsXzBNPPGEaN25s9u3bl6VNr169zIQJE67b54cffmgiIiLMe++955KczLdr5tuZuX7ssccyVd8vXLhg6tevn+XTC66ea2/JyXFT8MeNuzI6m9OTjm9vyMhxc3Ptk94w356W8eqc6enppkuXLpm+xPJ6nzTdvHmzqVevnhkwYIDjU2YfffSR6dKli+OLPK/9pOmvv/5qGjVqZGrWrGl69OhhEhISHPtGbjNezdPGMrfjuGvXLtOoUSNz/PhxY4xx+mqP/IyjuzA2mTnzHJuammrOnz/vWJbxWnC9LxD/+eefTXh4uDl48CDvmT0449U8eb49Lac3ZLxeTm99zbqau177PTnj1Tmv5g3PQ56W0dmcGTz5/b0nzffVPOFc7uqcOR3jx44dM+Hh4Wb69OmO5adOnTKRkZFm06ZNZs6cOSY8PNwcOnTIsTzjCjdjjFm7dq2pU6eOiY6ONn379jUrVqwwaWlpuc55Lb4TxkK7d+/Och/1O+64Q6dPn5YkrVu3LlOlz8/PT1WrVtXp06eVkpKiL7/8MtO95kqXLq2QkBCdPn1aRYsW1dKlS/X++++rYcOGSkxMVFxcnNP3Ls4p49/+9jedOHEi0/ITJ06oTJky+vzzz3XkyBE1btxYMTExGjVqlP744w/FxMRo48aNKlOmjL744gvNmjVL4eHhmj9/vh555BFdvHjRqYwZLly4oKeeekq7d+/W+++/r8qVK2danpKSovXr16t169bZtp8/f77Gjh2roUOHqnv37o7HXZWT+XbdfN9orn/55RdVr17d8fMtt9yiSpUq6fDhw47HrJ5rb8rJcWP9ceMJGXOT0xOOb2/IKHHc3Ez7pOT58+0NGf/44w8lJSXpjTfeUExMjGJiYvTHH39o1KhRevrppx3r/fTTT+rZs6caNWqkKVOmOK6u+uyzz7R9+3bVrVtXMTExmjNnjjZu3Ojop1q1alq9erUmTZqkMmXKaOrUqerZs6eMMU7llDx7LHMax6+++kpnz57VPffco5iYGPXq1UuSFBMTk6tP+LpyHAsaY5NVTs+xgYGBCg4OdizLeC04evSoLly4oM8//1zp6emO5Xfeeack6fTp07xn9sCM3jLf3pDTGzJm8ObXrAzufO33hoxX8/TnIW/JmFNOyf3vnXPK6Alj6Q3ncjkd4yVLllShQoVUtWpVR5uSJUsqJCRER44cUZkyZRxXs2WoUqWK/vzzT0lS48aNtWbNGo0aNUpBQUF65ZVX9OKLLzqVMZM8l2+QraurhnPmzDFt27Z1VM2NMeall14yAwYMMMYY07NnTzNy5EjHsrS0NNOmTRvz4YcfmtTUVFOnTh3zr3/9y7H88OHDJiIiwvz6669m8+bNZubMmY5lly9fztW9DJ3N+Oabb5ru3bs7liUnJ5uYmBjz448/mhMnTpj9+/c7/s2dO9c0a9bM7N+/31y8eNF8++23JiEhwdE2owK5ZcsWp8fSbreb7t27m6ZNm5o9e/Zku/7PP/9satasaS5fvpxlWWJiogkPD89yD0hjTL5yMt+umW9n5rp169ZmwYIFmcYiNjbWfP7558YY6+baW3Jy3BT8ceOujM7m9ITj2xsyctzcXPukN8y3p2a8Omdqamqm+dq/f79p1qyZmTt3ruNKql27dpmYmBgzYMAAk5qamqmfI0eOZGr76quvms6dO5v9+/eb1NRUs2LFikz7YFJSkgkPD3dc9ZCbjMZ47ljmdhxPnz6dadknn3xiwsPDzf79+zN9aju7390Yk69xdBfGJjNnnmO7du2a6ZOfdrvdtG3b1ixcuNCxf27evNmxfMOGDSYyMtKcP3+e98wemNFb5ttTc3pDxmtzevtrljHuf+335IxX5zTGO56HPDWjszmN8fz3954w3556Lnd1ztwc44888oiZMmWKo+3JkydN9erVzZYtW8zevXtNeHi4+e233xzLFyxYYNq1a2eMuXJVzNq1ax3LVq1aZWrXrp2rjNnhO2Es1KFDB82ZM0eTJ0/Www8/rP/973/69NNPtWTJEknS448/rkGDBqlBgwaqWbOm3n33XV26dEkdO3ZUYGCgunTpoqlTpyo0NFRFihTRq6++qrvvvlvVqlWTzWbTjBkzVLp0aTVu3FgbNmxQcnKyIiIiXJrxoYce0vz58zV37ly1bNlSM2bMUFhYmGJjY+Xn56fbbrvN0ddtt92mwMBAVapUSZKUnp6uiRMnqkyZMoqMjNRnn32mokWLZqlA58ayZcv0008/adasWSpevLiOHz8uSSpUqJBCQkIkXanShoWFZbkn4ZkzZzR27Fh16tRJ9913n6OtdOXehq7KyXy7ZhxzmuuHH35Ys2fPVuXKlVWpUiXNmTNHt9xyi1q1alVgc+0tOTluCua48YSMucnpCce3N2TkuLm59klvmG9vyHj13Fz92G233aa//e1vkqRXXnlF5cqV00svveT4BJ0k3XrrrY51MpQoUUJFihRx9Hn+/HnNnj1bJUuWVFhYmP71r38pNDRUJUuWdCqnp49lbsYxI6ckHTlyRJKytLkeV42jOzA2WeX0HNuqVSvNmDFDkZGRqlKlihYuXKjz58+rU6dOCg4OVps2bfTqq6/qtddeU3JysoYPH66uXbsqODiY98wemNFb5tsbcnpDRsk3XrPc/drvDRkzeMPzkDdkzE1Oyf3vnb1hLL3hXC43x3iPHj300ksvKTIyUuHh4Zo0aZIiIyMVFRUlPz8/tWjRQi+99JJGjx6t48ePa+7cuXrmmWckXXk/uWTJEk2YMEEhISH68ssvVaNGDacyZpLn8g2yde2nqpKSkszDDz9soqKizL333mu++eabTOsvXbrUtGnTxtSuXdt069YtUwX08uXL5vXXXzdNmzY1MTEx5sUXX8z0Sa6VK1eaNm3amFq1apk2bdqYVatWWZLxu+++M23atDFRUVGme/fu5vfff8+232vv8WeMMfPnzzctW7Y0tWrVMh06dDD/+9//cpXx2pw9e/Y04eHhWf5dfT/OOXPmmEceeSRLP6tWrcq2bfj/3bc1PzmZb9fMtzNznZaWZubMmWNatWpl6tata5566ilHRivn2ltycty457hxR8a85HT38e0NGTlubq590hvm21MzXpvzWtndjzm7f9ndl/3ae67b7XYzceJE07RpU1OrVi3z6KOPml9++cXpjJ46lrkdx2s5+70n+RlHd2FsMnPmOTY9Pd3MmjXLtGjRwtSqVcvEx8ebXbt2OZafO3fODBs2zDRs2NA0bNjQjB8/PtMngnnP7FkZjfGO+fbUnN6Q8dqc3v6a5Smv/Z6a8dqc3vA85KkZnc1pjPuPHU8dS2eeK43xjL8XXyu794dLliwxLVu2NFFRUebpp582f/75p2PZuXPnzNChQ02dOnVM48aNzfTp0x1X/yQnJ5uXX37ZNGrUyERFRWWah7zwM8aDb3QLAAAAAAAAAADgpfzdHQAAAAAAAAAAAMAXUYQBAAAAAAAAAACwAEUYAAAAAAAAAAAAC1CEAQAAAAAAAAAAsABFGBdKSUnR/fffr59++inLsvPnz6tZs2ZKTEzMtu0XX3yhiIgIp/v1xYzekjO7vn744Qd16NBBUVFR6tChg9asWZOpTYcOHRQREZHp36+//ipJOnnypAYOHKh69eqpadOmmjRpktLS0siYTcZ3331XLVq0UHR0tJ566int37/fsSw5OVkjRoxQbGysGjRooJEjR+qvv/7KV8a85ly7dq3uv/9+RUdH64knntDBgwez7XvevHlq1aqVWzJ6wnxnyO7YvjZbxr+VK1dmyli/fn3dc889131esDqnJP373/9W27ZtVadOHfXs2VOHDx/O1N+YMWPUoEEDNWnSRFOnTpUxpkAzumMsvXUct2zZokcffVQxMTFq27atli5dmqnNRx99pLvvvlt169bVU089lenYPnfunIYPH64mTZqoUaNGGjZsmM6dO5evjNfLmSG7sTTGaO7cuWrVqpXq1q2r7t27a8+ePdn2PWbMGHXr1o2MHDeW58zgqe972Sc9i7ccCwXFG/bnvOS8Gs8Nec94NU8+b+d11bmcnnZezHy7932UJ5wn3SijJ52787eagsnoKX+by+BJ+2W2DFzi0qVLpl+/fiY8PNysW7cuy/KRI0ea8PBws3z58izLzp49a5o2bWrCw8Od7tfXMnpLzuz62r9/v4mKijLvvvuu+f33382CBQtMzZo1zcGDB40xxqSlpZnatWub9evXm2PHjjn+paamGmOMefLJJ02PHj3M7t27zYYNG0zz5s3NrFmzyHhNxk8++cTUq1fPfPfdd2bfvn1myJAhpm3btiY9Pd0YY8zw4cPNgw8+aLZt22a2b99uOnToYEaMGJHnjHnNefjwYVOnTh0zf/588+uvv5pBgwaZ+++/35Ezw++//26io6NNy5YtCzyjJ8z31bI7tq/OdezYMTNx4kTTsmVLc+7cOZOenm66dOliHn74YfPLL7+Y1atXmwYNGpgvv/wyzxnzmnPTpk2mRo0a5qOPPjJ79+41ffr0MY888kimNm3atDFbt241a9euNbGxseajjz4q0IwFPZbeOo7Hjh0z9evXN1OmTDH79u0zq1atMrVr1zbffvutMcaY77//3sTExJjVq1eb3377zfTv39888MADjj4HDx5s4uLiHM9BnTt3NgMGDMhzxuvlvFp2Y7lo0SITGxvryPnyyy+bFi1amOTk5ExtN23aZCIiIkzXrl3JyHFjac4Mnvy+l33Sc3jLsVBQvGF/zmvODDw35C9jBk8/b+d1Nfc5Pe28mPl27/soTzhPyimjp5y787eagsnoKX+bu5qn7JfXw5UwLrBnzx498sgj+v3337NdvnHjRq1bt05lypTJdvnEiRNVsWJFp/v1tYzekvN6fR05ckSPPPKInnzySVWsWFE9evRQsWLF9PPPP0uSDh06pNTUVEVFRalMmTKOf4GBgUpJSdFtt92mUaNG6c4771T9+vXVtm1bbdq0iYzXZDx//ryGDh2q5s2bq3LlyurVq5f27dunU6dOSZIKFSqkkSNHqlatWqpZs6YeeuihPGfMT86lS5eqVq1a6tmzp6pVq6YJEybo8OHDWr9+faZ+Ro0apcjIyDzny09GT5jvDNc7tq/OdenSJX3wwQd67bXXdOutt2r79u1KSkrSlClTVKNGDbVs2VJPP/205s+fn6eM+cm5YMECdejQQY8++qiqVq2q4cOH6/jx4zp16pTOnDmj5cuX69VXX1VUVJQaN26snj17auvWrQWasSDH0pvH8ZtvvlHp0qU1ZMgQVa5cWffdd586duyof/3rX5KkNWvW6K677lLLli1VpUoV9e/fX7t27dKpU6eUnJysL7/8Uq+88orjOejll1/WN998o8uXL7s0Z4brjeWKFSvUs2dPR87Ro0frzJkz2rx5s2OdlJQUvfLKK6pTp06est0MGTluXJczgye/72Wf9AzeciwUFG/Yn/OTMwPPDfnLmMHTz9t5Xc19Tk86L2a+3f8+yhPOk3LK6Cnn7vytpmAyesrf5jJ4yn55IxRhXGD9+vWKjY3VkiVLsixLSUnRyJEj9corrygoKCjbtuvXr1ffvn2d6jc1NdVxWVdMTIz69u2ro0ePenVGb8l5vb5iY2M1fPhwR59Lly5VSkqKoqKiJF15wihXrpwKFy6cpc+goCBNnjxZlSpVkiTt3r1bq1evVsOGDR3rTJ06VXfddZeioqLUrVs37d69+6bMGB8fry5duki68qS/aNEiVatWTaVKlZJ05YWyXr16kq68cK1atSpTxoULF6ply5aqXbu24uLitHHjxutmzE/OrVu3qn79+o71ixYtqpo1a2rLli2Ox1auXKmLFy+qc+fOWbZ7s8y3lPOxneGtt95S48aN1aRJE0nSwYMHVapUqUwnmhEREdq+fbtSU1ML9Dlo/fr1uueeexw/V6xYUatXr1apUqW0adMmBQcHZxq73r17a8KECZKu3L5qwIABql+/vho0aKDnn39eFy5ccHnGq1k9lt48js2aNXP0ebWMvkJCQrRhwwbt3btXaWlpWrlypSpUqKASJUrI399fs2fPzvJm3W63Oy69dua4uVFO6cZj+cILL6hDhw6On/38/GSM0fnz5x2PzZ07VxEREWratGmmtgU1396Q8WocN/nLmdHWk9/3sk96Bm85FgqKN+zP+cmZ0ZbnhvxlzGjrDeftGXhdvXFOTzovZr7d/z7KE86Tcsp4NXeeu/O3mpvrb3OSZ+2XNxKY55ZwePzxx6+7bPbs2apRo4buuuuuLMuu3kkKFSrkVL8JCQnasGGDFixYoCJFimj06NEaP368pk2b5rUZvSXnjfqSpAMHDujee++V3W7Xc889p7CwMEnS3r17VahQIfXp00fbt29XlSpV9MILLziewDJ07dpVGzZsUM2aNRUfHy9J+vrrr7VkyRLNmDFDZcuW1T//+U+99NJLWrZs2U2XMcOyZcs0fPhwBQUFaf78+fLz88u0/MUXX3T8cbRfv36SpB07dmjixIl6++23deedd2rhwoUaPHiwvv/+e/n7Z1+TzmvO48ePq2zZspnWve2223TkyBFJ0qlTpzR58mS9++672rZtW6b1brb5vtGxneGPP/7QqlWrtHjxYsdjpUuX1vnz53Xx4kUVLVpU0pVPa6Slpen8+fP69NNPC+Q56Ny5czp79qzs/6+9+4+Jsn7gAP6+APUG5aESCrehKKeIIZdTo9BUDF3OJhb+CI2EmNGGmI0ahcCEUL+APzJOYAFpOH+k4I/A0fyRtRKnE7ZqJaLREiUPAoIOAeXz/YPdM04zDz2Oe7z3a/MP7sPz7O3n1/Pj89zDnTuIiorCr7/+Cn9/f6SkpMDd3R1//PEHPD09cfjwYeTk5KCrqwuLFy9GTEwMnnjiCXzyySfQ6/XYu3cvbt++jfj4eOh0Orz//vsWy9ibNepSzvWoVqtN5pvGxkaUlpYiNjYWALBy5UqcPXsWL7/8MhwcHKBUKrFnzx44ODjAwcEBM2fONNnf7t27MX78eAwbNqzP4+Zh6xKAyYUF0PPE1+3bt6UT4StXrmDv3r04cuQI9u7da/K71jrHkENGI46bR8sJ2M65Gvtk346LA0EuY8Fa5NCfHyUn5wbLZJTLdbsRj6vm5QRs47qY7T2w51G2cp30Xxl7s4Vrd4D3auzp3pwt9cv/wkWYflRTU4N9+/bh6NGj/1qenZ0NPz8/BAUF9fkP4127dg2DBw+Gp6cnVCoVNm3ahObm5scyo5xyAsCwYcNw8OBBVFZWYtOmTfDy8sK8efPw22+/oaWlBWFhYVizZg0OHDiAiIgIlJWVYdSoUdL2iYmJaGlpQVpaGtatW4ecnBzU1dXByckJHh4e8PDwwPr163H16lW7zGj0/PPPo6SkBIcOHcI777yDkpISk9Xr6OhoLF++HFlZWYiOjkZxcTHq6uqgUCjg4eEBtVqNtWvXYvbs2eju7r7vRP+wOdvb2+9ZgR80aBA6OzsBAOnp6QgNDYWPj889B3Z7au8HjW2jgwcPYtKkSZg8ebL02eTJk/H0008jNTUViYmJ0Ov1KCwsBNDzpIa15iCDwQAASEtLw7vvvou4uDhs374dq1evRnFxMQwGA37//Xfs27cPGzduhF6vR1JSEpRKpfQHFZ2dnaFWq6FUKh/6gC6HupRDPfZ269YtxMbGYsSIEdJTPjdv3kRHR4f09JFOp0N8fDwOHjx4z5NKRUVFOH78OD777DMAlh3b5rY30PO01+bNmxEVFQU3NzcIIZCUlCT93+5mrXMMOWXkuHm0nIBtnKuxT1r2nNfa5DIWrEUO/dmcnJwbLJPRFurRnJxGPK6az5avi9ne1jmPspWccmjv3nivxj7uzcmpX/J1ZP1ECIHExESsWbPmX0/GqqurceDAAXz44YcPtf+lS5dCr9cjKCgIkZGROHPmDMaOHfvYZZRTTqMnn3wSEydORHh4OMLCwlBUVAQASE1NxYkTJzB37lz4+fkhJSUFarUaR44cMdl+woQJmD59OtLT03H69Glcu3YNCxYswJAhQxAcHIzly5ejpKQEPj4+dpnRyMPDAxMnTkRiYiJGjRqFw4cPm5SPGzcOAQEB2Lp1Ky5duoTz588jKCgIGo0GCxcuRGhoKAoKCuDt7Q1Hx4dfj75fzsGDB0sHcaPOzk4olUp89913qKqqkp4CuJu9tPeDxnZv5eXlJq+BAHrqeNu2baioqMCUKVMQHh6OZcuWAQBcXFysNgc5ODgAAMLCwrBo0SL4+/sjMzMT1dXVqKqqgqOjI9ra2pCVlQWtVouQkBC8/fbb0tdo33jjDVy8eBGBgYGIiYnBjz/+iNGjR1s0Y28DVZdyqMfe/vnnH6xevRq1tbXIzc2VnoxJTk5GSEgIFi5cCH9/f2RlZaG+vh4nT5402X7Pnj1IS0tDQkKC9ESOpcZ2X9q7srISUVFRmDlzJuLi4gAA+/fvx507d6SFpbtZo73llpHj5tFy2sK5Gvuk5Y6LA0EuY8Fa5NCfzcnJucEyGW2hHs3J2RuPq+az1etitrf1zqNsIacc2vtuvFfz+N+bk1u/5CJMP7l+/ToqKyuxefNmaLVaaLVaXL9+HcnJyXjrrbfw9ddfo6WlBS+99BK0Wi2io6MBAFqt1qwncHx8fHDq1ClkZGTAzc0NW7ZsQWRkJIQQj1VGOeW8fPnyPe8wHDt2LJqamgAAjo6OcHFxkcoUCgW8vb3x559/oq2tDWVlZeju7pbKx40bBwBoamqCm5sbjh8/jp07d0Kj0SA/Px9LlixBe3u73WWsqKgwWcU3ZmxqakJnZyfKy8tN3m86YsQIqFQqNDU1QalU4ssvv8SuXbswbdo0FBcXY/HixQ/1TscH5XR3d0dDQ4NJeUNDA9zc3FBWVob6+noEBgZCq9UiOTkZ169fh1arxYULF+ymvR80to1u3LiBmpoaBAcH37MPf39/nDp1Ct9++y2++eYbjBkzBq6urnB2drbaHOTq6gonJyd4e3tL27i6ukKlUqG+vh5ubm7S0xNGY8aMwY0bNwAAgYGBOHPmDJKTkzFo0CAkJSXhgw8+sGhGW6hLOdSjUVtbG6KionD58mXs2rXL5CLl559/xoQJE6SfnZ2d4eXlhbq6Oumz/Px8bNiwAfHx8YiIiJA+t9TYNre9z507h8jISDz33HPIysqSnioqLS3FTz/9hGeffRZarRa5ubm4cOGCtB9rtLecMnLcPHpOWzhXY5+03HFxIMhlLFiLHPqzOTk5Nzw+9diXuuRx1Ty2fl3M9rbeeZQt5JRDexvxXo393JuTU78EAAiyKI1GIyoqKkRXV5eora01+TdjxgyRl5cn6uvrRVNTk0nZkSNHhEajEbW1taK1tfW++zUqKSkRpaWl0s+VlZVCo9EIvV7/WGSUS87e+8rNzRXz5s0T3d3dUnlCQoKIjY0VQgixYsUKsWPHDqnszp07Yt68eWL37t3i5s2bQqPRiIsXL0rl58+fF76+vqK1tVWcPn1a7NmzRyoz/n5VVZXdZYyMjBTr16+Xym7fvi1CQkJEUVGR6OrqEgEBAeLYsWNSeV1dnRg/fryorq4WFy9eFDqdTirr6OgQU6ZMMWl/S+Xctm2biIiIkMoMBoPQarXi7NmzoqGhwaTP5uXliRkzZoja2lrR3t5uN+39oLFtdPz4cfHiiy/es5+mpiaxbNky8ddff0mfpaSkSP8/a81BQgixZMkSkZWVJW3b2NgoJkyYIKqqqsSVK1eERqMRV69elcoLCgrE/PnzhRBCFBYWih9++EEq++qrr8Qzzzxj8YxCDExdyqkehegZBxEREeKFF14QNTU19/zu3LlzRUFBgfRzR0eHmD59uigrKxNCCFFcXCw0Go0oLCy8Z9tHGTe9c5pTl5cuXRJarVbExsaKrq4uk/3U19ebbJuamipee+01UVtbK7q6uqzW3nLIKATHjSVy2sK5Gvvkox8XB4JcxoK1yKE/9yUn5wb512Nf61IIHlfNySmE7V4Xs72tfx41kDnl0N69cwrBezX2dG/O1vvl3fg3YfqJo6MjvLy87vls+PDhcHd3BwCoVCqpzPgHoO7e5n5aW1uRk5MDV1dXqNVqHDt2DCNHjoSrq+tjlVFOOV955RXk5uYiMzMTYWFh+P7773H06FHpK6Bz5sxBdnY2fH19MWbMGOzevRutra0IDQ2Fi4sLQkJCkJqairS0NBgMBnz00UdYsWIFXFxc0N3djf/9739wc3ODr68vSktLoVQq+/wV0sch4+uvv464uDhMnToVfn5+KCwsxK1bt7Bo0SI4Ojpi6dKl2LJlC0aOHIkhQ4YgNTUVwcHB8PHxwS+//ILs7GyMGDECgYGBOH/+PAwGA8aPH9+njObkfPXVV5Gfn4+8vDzMnj0b2dnZUKvVmD59OhQKBYYPHy7ta/jw4Sb93F7a25yxDfQ8gfFvX/lUqVQwGAzIyMhATEwMKioqcOjQIenrsdacg1atWoWEhAT4+vpCo9EgIyMDvr6+8Pf3h0KhwKxZs5CQkICUlBTo9Xrk5eUhJiYGQM+ctX//fmzcuBEqlQrl5eWYOHGixTMCA1uXcqhHoOddsefOncPOnTvx1FNPQa/XAwCcnJygUqkQFhaGnJwcjB49Gl5eXsjNzYWzszPmzJmD5uZmbNiwAaGhoViwYIG0LdDzLl1LjW1z6jIpKQmjRo1CQkKC9LQS0PN18t59AgCGDh2KIUOGSPu0VnvLISPAcWOpnAN9rsY+abnj4kCQy1iwFjn0Z3Nzcm6wTMaBrkdzcwI8rprL1q+L2d7WPY8a6JxyaG8j3quxn3tzcuqXAMBFGJkKDw9HfX094uPj0dLSgkmTJmHnzp3SuyJtgRwyApbLOXLkSOTn5yM9PR1FRUXw9PTE9u3b4efnBwB488030dHRgbS0NDQ0NGDy5MkoLCyUvmKYnp6O9PR0rFq1CgCwaNEivPfeewB6JuA1a9ZIf2TN29sbOp0OQ4cOtbuMwcHBSElJwaeffoobN24gICAABQUFcHZ2BgCsW7cOCoUCa9euhcFgQEhICBITEwEAvr6++Pjjj6HT6bBhwwZ4eHggIyPjod7p+KCcarUaO3bsQHp6OrKzs6HVapGdnQ2FQvHAfdtTe5ujoaHhvvvdunUrkpOTsXDhQqjVamzfvh3+/v4ArDsHzZ8/H3///TcyMjLQ2NiIadOmQafTSe2dmZmJ1NRULF++HEqlEuHh4Vi5ciUAIC4uDq2trYiJiYHBYMDUqVORkZFh8YyA7delLdRjeXk5uru7sXr1apPPp02bhi+++AJRUVEAev4wZnNzM7RaLT7//HMMHjwYJ06cgMFgQElJCUpKSky2P3nypNXGjV6vR2VlJQBg1qxZJmUbN27E4sWL/3N7a7S3HDIacdwMPPZJU7beJweKPYwFc8mpPz8Kzg2WYe2Mtj6H2cpcIpfr4gdhe9tXTltob96rsa97c+awhX4JAAohZPASYCIiIiIiIiIiIiIiIpl5YqADEBERERERERERERERPY64CENERERERERERERERNQPuAhDRERERERERERERETUD7gIQ0RERERERERERERE1A+4CENERERERERERERERNQPuAhDRERERERERERERETUD7gIQ0RERERERERERERE1A+4CENERERERERERERERNQPuAhDRERERERERERERETUD7gIQ0RERERERERERERE1A+4CENERERERERERERERNQPuAhDRERERERERERERETUD/4PJ5fN7BhSYmwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lpgd.df_tukey_cmp_plot(df=df_dpi_6, groups=\"gen\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
genoivp_oivdifference
meanstdmeanstd
01441s8.6666670.7784998.1666671.0298570.500000
11466s6.6923080.7510687.3076920.751068-0.615385
\n", "
" ], "text/plain": [ " gen oiv p_oiv difference\n", " mean std mean std \n", "0 1441s 8.666667 0.778499 8.166667 1.029857 0.500000\n", "1 1466s 6.692308 0.751068 7.307692 0.751068 -0.615385" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_cmp_means = (\n", " (df_dpi_6[df_dpi_6.gen.isin([\"1441s\", \"1466s\"])])\n", " .groupby(\"gen\")\n", " .agg({\"oiv\": [\"mean\", \"std\"], \"p_oiv\": [\"mean\", \"std\"]})\n", " .reset_index()\n", ")\n", "df_cmp_means[\"difference\"] = df_cmp_means.oiv[\"mean\"] - df_cmp_means.p_oiv[\"mean\"]\n", "df_cmp_means" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.holoviews_exec.v0+json": "", "text/html": [ "
\n", "
\n", "
\n", "" ], "text/plain": [ "GridBox(design=\n", "
\n", "\n", "" ], "text/plain": [ "GridBox(design=