trapoom555
commited on
Commit
·
5ab02d7
1
Parent(s):
b08a7ee
initial commit
Browse files- README.md +120 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- sentence-embedding
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
- feature-extraction
|
10 |
+
pipeline_tag: sentence-similarity
|
11 |
---
|
12 |
+
|
13 |
+
# MiniCPM-2B-Text-Embedding-cft
|
14 |
+
|
15 |
+
## Description
|
16 |
+
|
17 |
+
This is a fine-tuned version of [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets. ⚠️ **The training process ignores hard-negative samples and treat other in-bash samples + their entailments as in-batch negatives**. If you want to see the version utilizing hard-negative examples in training, please refer [here](https://huggingface.co/trapoom555/MiniCPM-2B-Text-Embedding-cft)
|
18 |
+
|
19 |
+
## Base Model
|
20 |
+
|
21 |
+
[MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16)
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
1. Clone MiniCPM-2B-dpo-bf16 repository
|
26 |
+
|
27 |
+
```bash
|
28 |
+
git clone https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16
|
29 |
+
```
|
30 |
+
|
31 |
+
2. Change a tokenizer setting in `tokenizer_config.json`
|
32 |
+
|
33 |
+
```json
|
34 |
+
"add_eos_token": true
|
35 |
+
```
|
36 |
+
|
37 |
+
3. Use the model
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
import torch
|
42 |
+
import numpy as np
|
43 |
+
|
44 |
+
class MiniCPMSentenceEmbedding:
|
45 |
+
def __init__(self, model_path='openbmb/MiniCPM-2B-dpo-bf16', adapter_path=None):
|
46 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
47 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path,
|
48 |
+
torch_dtype=torch.bfloat16,
|
49 |
+
device_map='cuda',
|
50 |
+
trust_remote_code=True)
|
51 |
+
if adapter_path != None:
|
52 |
+
# Load fine-tuned LoRA
|
53 |
+
self.model.load_adapter(adapter_path)
|
54 |
+
|
55 |
+
def get_last_hidden_state(self, text):
|
56 |
+
inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
|
57 |
+
with torch.no_grad():
|
58 |
+
out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
|
59 |
+
return out.squeeze().float().cpu().numpy()
|
60 |
+
|
61 |
+
def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
|
62 |
+
"""
|
63 |
+
Returns a list of embeddings for the given sentences.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
sentences: List of sentences to encode
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
List of embeddings for the given sentences
|
70 |
+
"""
|
71 |
+
|
72 |
+
out = []
|
73 |
+
|
74 |
+
for s in sentences:
|
75 |
+
out.append(self.get_last_hidden_state(s))
|
76 |
+
|
77 |
+
return out
|
78 |
+
|
79 |
+
minicpm_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/MiniCPM-2B-Text-Embedding-cft-pos')
|
80 |
+
|
81 |
+
example_sentences = ["I don't like apples", "I like apples"]
|
82 |
+
|
83 |
+
encoded_sentences = minicpm_sentence_embedding.encode(example_sentences)
|
84 |
+
|
85 |
+
print(encoded_sentences)
|
86 |
+
|
87 |
+
```
|
88 |
+
|
89 |
+
## Training Details
|
90 |
+
|
91 |
+
⚠️ **The training process ignores hard-negative samples and treat other in-bash samples + their entailments as in-batch negatives**.
|
92 |
+
|
93 |
+
| **Training Details** | **Value** |
|
94 |
+
|-------------------------|-------------------|
|
95 |
+
| Loss | InfoNCE |
|
96 |
+
| Batch Size | 60 |
|
97 |
+
| InfoNCE Temperature | 0.05 |
|
98 |
+
| Learning Rate | 1e-05 |
|
99 |
+
| Warmup Steps | 100 |
|
100 |
+
| Learning Rate Scheduler | CosineAnnealingLR |
|
101 |
+
| LoRA Rank | 8 |
|
102 |
+
| LoRA Alpha | 32 |
|
103 |
+
| LoRA Dropout | 0.1 |
|
104 |
+
| Training Precision | bf16 |
|
105 |
+
| Max Epoch | 1 |
|
106 |
+
| GPU | RTX3090 |
|
107 |
+
| Num GPUs | 4 |
|
108 |
+
|
109 |
+
## Training Scripts
|
110 |
+
|
111 |
+
**_(coming soon...)_**
|
112 |
+
|
113 |
+
## Evaluation Results
|
114 |
+
|
115 |
+
**_(coming soon...)_**
|
116 |
+
|
117 |
+
## Contributors
|
118 |
+
|
119 |
+
Trapoom Ukarapol, Zhicheng Lee, Amy Xin
|
120 |
+
|
121 |
+
## Foot Notes
|
122 |
+
|
123 |
+
This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "../pretrained/MiniCPM-2B-dpo-bf16/",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": "gaussian",
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aa43ee2910254ba201a8450312824a4d2bb44a9ee616c820e50322036b9526e
|
3 |
+
size 5919456
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4122a97d1616648f1c4c98ecf5e213bfcd54b55d4af110f51aea582f4c439d1
|
3 |
+
size 4984
|