import importlib utils = importlib.import_module('extensions.sd-webui-controlnet.tests.utils', 'utils') utils.setup_test_env() from scripts.utils import ndarray_lru_cache import unittest import numpy as np class TestNumpyLruCache(unittest.TestCase): def setUp(self): self.arr1 = np.array([1, 2, 3, 4, 5]) self.arr2 = np.array([1, 2, 3, 4, 5]) @ndarray_lru_cache(max_size=128) def add_one(self, arr): return arr + 1 def test_same_array(self): # Test that the decorator works with numpy arrays. result1 = self.add_one(self.arr1) result2 = self.add_one(self.arr1) # If caching is working correctly, these should be the same object. self.assertIs(result1, result2) def test_different_array_same_data(self): # Test that the decorator works with different numpy arrays with the same data. result1 = self.add_one(self.arr1) result2 = self.add_one(self.arr2) # If caching is working correctly, these should be the same object. self.assertIs(result1, result2) def test_cache_size(self): # Test that the cache size limit is respected. arrs = [np.array([i]) for i in range(150)] # Add all arrays to the cache. result1 = self.add_one(arrs[0]) for arr in arrs[1:]: self.add_one(arr) # Check that the first array is no longer in the cache. result2 = self.add_one(arrs[0]) # If the cache size limit is working correctly, these should not be the same object. self.assertIsNot(result1, result2) def test_large_array(self): # Create two large arrays with the same elements in the beginning and end, but one different element in the middle. arr1 = np.ones(10000) arr2 = np.ones(10000) arr2[len(arr2)//2] = 0 result1 = self.add_one(arr1) result2 = self.add_one(arr2) # If hashing is working correctly, these should not be the same object because the input arrays are not equal. self.assertIsNot(result1, result2) if __name__ == '__main__': unittest.main()