import modules.scripts as scripts import gradio as gr import os import torch import random import time import pprint import shutil from modules.processing import process_images,Processed from modules.paths import models_path from modules.textual_inversion import autocrop import modules.images from modules import shared,deepbooru,masking import cv2 import copy import numpy as np from PIL import Image,ImageOps import glob import requests import json import re from extensions.ebsynth_utility.calculator import CalcParser,ParseError def get_my_dir(): if os.path.isdir("extensions/ebsynth_utility"): return "extensions/ebsynth_utility" return scripts.basedir() def x_ceiling(value, step): return -(-value // step) * step def remove_pngs_in_dir(path): if not os.path.isdir(path): return pngs = glob.glob( os.path.join(path, "*.png") ) for png in pngs: os.remove(png) def resize_img(img, w, h): if img.shape[0] + img.shape[1] < h + w: interpolation = interpolation=cv2.INTER_CUBIC else: interpolation = interpolation=cv2.INTER_AREA return cv2.resize(img, (w, h), interpolation=interpolation) def download_and_cache_models(dirname): download_url = 'https://github.com/zymk9/yolov5_anime/blob/8b50add22dbd8224904221be3173390f56046794/weights/yolov5s_anime.pt?raw=true' model_file_name = 'yolov5s_anime.pt' if not os.path.exists(dirname): os.makedirs(dirname) cache_file = os.path.join(dirname, model_file_name) if not os.path.exists(cache_file): print(f"downloading face detection model from '{download_url}' to '{cache_file}'") response = requests.get(download_url) with open(cache_file, "wb") as f: f.write(response.content) if os.path.exists(cache_file): return cache_file return None class Script(scripts.Script): anime_face_detector = None face_detector = None face_merge_mask_filename = "face_crop_img2img_mask.png" face_merge_mask_image = None prompts_dir = "" calc_parser = None is_invert_mask = False controlnet_weight = 0.5 controlnet_weight_for_face = 0.5 add_tag_replace_underscore = False # The title of the script. This is what will be displayed in the dropdown menu. def title(self): return "ebsynth utility" # Determines when the script should be shown in the dropdown menu via the # returned value. As an example: # is_img2img is True if the current tab is img2img, and False if it is txt2img. # Thus, return is_img2img to only show the script on the img2img tab. def show(self, is_img2img): return is_img2img # How the script's is displayed in the UI. See https://gradio.app/docs/#components # for the different UI components you can use and how to create them. # Most UI components can return a value, such as a boolean for a checkbox. # The returned values are passed to the run method as parameters. def ui(self, is_img2img): with gr.Column(variant='panel'): with gr.Column(): project_dir = gr.Textbox(label='Project directory', lines=1) generation_test = gr.Checkbox(False, label="Generation TEST!!(Ignore Project directory and use the image and mask specified in the main UI)") with gr.Accordion("Mask option"): mask_mode = gr.Dropdown(choices=["Normal","Invert","None","Don't Override"], value="Normal" ,label="Mask Mode(Override img2img Mask mode)") inpaint_area = gr.Dropdown(choices=["Whole picture","Only masked","Don't Override"], type = "index", value="Only masked" ,label="Inpaint Area(Override img2img Inpaint area)") use_depth = gr.Checkbox(True, label="Use Depth Map If exists in /video_key_depth") gr.HTML(value="

\ See \ [here] for depth map.\

") with gr.Accordion("ControlNet option"): controlnet_weight = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight") controlnet_weight_for_face = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Control Net Weight For Face") use_preprocess_img = gr.Checkbox(True, label="Use Preprocess image If exists in /controlnet_preprocess") gr.HTML(value="

\ Please enable the following settings to use controlnet from this script.
\ \ Settings->ControlNet->Allow other script to control this extension\ \

") with gr.Accordion("Loopback option"): img2img_repeat_count = gr.Slider(minimum=1, maximum=30, step=1, value=1, label="Img2Img Repeat Count (Loop Back)") inc_seed = gr.Slider(minimum=0, maximum=9999999, step=1, value=1, label="Add N to seed when repeating ") with gr.Accordion("Auto Tagging option"): auto_tag_mode = gr.Dropdown(choices=["None","DeepDanbooru","CLIP"], value="None" ,label="Auto Tagging") add_tag_to_head = gr.Checkbox(False, label="Add additional prompts to the head") add_tag_replace_underscore = gr.Checkbox(False, label="Replace '_' with ' '(Does not affect the function to add tokens using add_token.txt.)") gr.HTML(value="

\ The results are stored in timestamp_prompts.txt.
\ If you want to use the same tagging results the next time you run img2img, rename the file to prompts.txt
\ Recommend enabling the following settings.
\ \ Settings->Interrogate Option->Interrogate: include ranks of model tags matches in results\ \

") with gr.Accordion("Face Crop option"): is_facecrop = gr.Checkbox(False, label="use Face Crop img2img") with gr.Row(): face_detection_method = gr.Dropdown(choices=["YuNet","Yolov5_anime"], value="YuNet" ,label="Face Detection Method") gr.HTML(value="

\ If loading of the Yolov5_anime model fails, check\ [this] solution.\

") face_crop_resolution = gr.Slider(minimum=128, maximum=2048, step=1, value=512, label="Face Crop Resolution") max_crop_size = gr.Slider(minimum=0, maximum=2048, step=1, value=1024, label="Max Crop Size") face_denoising_strength = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.5, label="Face Denoising Strength") face_area_magnification = gr.Slider(minimum=1.00, maximum=10.00, step=0.01, value=1.5, label="Face Area Magnification ") disable_facecrop_lpbk_last_time = gr.Checkbox(False, label="Disable at the last loopback time") with gr.Column(): enable_face_prompt = gr.Checkbox(False, label="Enable Face Prompt") face_prompt = gr.Textbox(label="Face Prompt", show_label=False, lines=2, placeholder="Prompt for Face", value = "face close up," ) return [project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time,use_preprocess_img] def detect_face_from_img(self, img_array): if not self.face_detector: dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) self.face_detector = cv2.FaceDetectorYN.create(dnn_model_path, "", (0, 0)) self.face_detector.setInputSize((img_array.shape[1], img_array.shape[0])) _, result = self.face_detector.detect(img_array) return result def detect_anime_face_from_img(self, img_array): import sys if not self.anime_face_detector: if 'models' in sys.modules: del sys.modules['models'] anime_model_path = download_and_cache_models(os.path.join(models_path, "yolov5_anime")) if not os.path.isfile(anime_model_path): print( "WARNING!! " + anime_model_path + " not found.") print( "use YuNet instead.") return self.detect_face_from_img(img_array) self.anime_face_detector = torch.hub.load('ultralytics/yolov5', 'custom', path=anime_model_path) # warmup test = np.zeros([512,512,3],dtype=np.uint8) _ = self.anime_face_detector(test) result = self.anime_face_detector(img_array) #models.common.Detections faces = [] for x_c, y_c, w, h, _, _ in result.xywh[0].tolist(): faces.append( [ x_c - w/2 , y_c - h/2, w, h ] ) return faces def detect_face(self, img, mask, face_detection_method, max_crop_size): img_array = np.array(img) # image without alpha if img_array.shape[2] == 4: img_array = img_array[:,:,:3] if mask is not None: if self.is_invert_mask: mask = ImageOps.invert(mask) mask_array = np.array(mask)/255 if mask_array.ndim == 2: mask_array = mask_array[:, :, np.newaxis] if mask_array.shape[2] == 4: mask_array = mask_array[:,:,:3] img_array = mask_array * img_array img_array = img_array.astype(np.uint8) if face_detection_method == "YuNet": faces = self.detect_face_from_img(img_array) elif face_detection_method == "Yolov5_anime": faces = self.detect_anime_face_from_img(img_array) else: faces = self.detect_face_from_img(img_array) if faces is None or len(faces) == 0: return [] face_coords = [] for face in faces: x = int(face[0]) y = int(face[1]) w = int(face[2]) h = int(face[3]) if max(w,h) > max_crop_size: print("ignore big face") continue if w == 0 or h == 0: print("ignore w,h = 0 face") continue face_coords.append( [ x/img_array.shape[1],y/img_array.shape[0],w/img_array.shape[1],h/img_array.shape[0]] ) return face_coords def get_mask(self): def create_mask( output, x_rate, y_rate, k_size ): img = np.zeros((512, 512, 3)) img = cv2.ellipse(img, ((256, 256), (int(512 * x_rate), int(512 * y_rate)), 0), (255, 255, 255), thickness=-1) img = cv2.GaussianBlur(img, (k_size, k_size), 0) cv2.imwrite(output, img) if self.face_merge_mask_image is None: mask_file_path = os.path.join( get_my_dir() , self.face_merge_mask_filename) if not os.path.isfile(mask_file_path): create_mask( mask_file_path, 0.9, 0.9, 91) m = cv2.imread( mask_file_path )[:,:,0] m = m[:, :, np.newaxis] self.face_merge_mask_image = m / 255 return self.face_merge_mask_image def face_img_crop(self, img, face_coords,face_area_magnification): img_array = np.array(img) face_imgs =[] new_coords = [] for face in face_coords: x = int(face[0] * img_array.shape[1]) y = int(face[1] * img_array.shape[0]) w = int(face[2] * img_array.shape[1]) h = int(face[3] * img_array.shape[0]) print([x,y,w,h]) cx = x + int(w/2) cy = y + int(h/2) x = cx - int(w*face_area_magnification / 2) x = x if x > 0 else 0 w = cx + int(w*face_area_magnification / 2) - x w = w if x+w < img.width else img.width - x y = cy - int(h*face_area_magnification / 2) y = y if y > 0 else 0 h = cy + int(h*face_area_magnification / 2) - y h = h if y+h < img.height else img.height - y print([x,y,w,h]) face_imgs.append( img_array[y: y+h, x: x+w] ) new_coords.append( [x,y,w,h] ) resized = [] for face_img in face_imgs: if face_img.shape[1] < face_img.shape[0]: re_w = self.face_crop_resolution re_h = int(x_ceiling( (self.face_crop_resolution / face_img.shape[1]) * face_img.shape[0] , 64)) else: re_w = int(x_ceiling( (self.face_crop_resolution / face_img.shape[0]) * face_img.shape[1] , 64)) re_h = self.face_crop_resolution face_img = resize_img(face_img, re_w, re_h) resized.append( Image.fromarray(face_img)) return resized, new_coords def face_crop_img2img(self, p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_img, controlnet_input_face_imgs, preprocess_img_exist): def merge_face(img, face_img, face_coord, base_img_size, mask): x_rate = img.width / base_img_size[0] y_rate = img.height / base_img_size[1] img_array = np.array(img) x = int(face_coord[0] * x_rate) y = int(face_coord[1] * y_rate) w = int(face_coord[2] * x_rate) h = int(face_coord[3] * y_rate) face_array = np.array(face_img) face_array = resize_img(face_array, w, h) mask = resize_img(mask, w, h) if mask.ndim == 2: mask = mask[:, :, np.newaxis] bg = img_array[y: y+h, x: x+w] img_array[y: y+h, x: x+w] = mask * face_array + (1-mask)*bg return Image.fromarray(img_array) base_img = p.init_images[0] base_img_size = (base_img.width, base_img.height) if face_coords is None or len(face_coords) == 0: print("no face detected") return process_images(p) print(face_coords) face_imgs, new_coords = self.face_img_crop(base_img, face_coords, face_area_magnification) if not face_imgs: return process_images(p) face_p = copy.copy(p) ### img2img base img proc = self.process_images(p, controlnet_input_img, self.controlnet_weight, preprocess_img_exist) print(proc.seed) ### img2img for each face face_img2img_results = [] for face, coord, controlnet_input_face in zip(face_imgs, new_coords, controlnet_input_face_imgs): # cv2.imwrite("scripts/face.png", np.array(face)[:, :, ::-1]) face_p.init_images = [face] face_p.width = face.width face_p.height = face.height face_p.denoising_strength = face_denoising_strength if enable_face_prompt: face_p.prompt = face_prompt else: face_p.prompt = "close-up face ," + face_p.prompt if p.image_mask is not None: x,y,w,h = coord cropped_face_mask = Image.fromarray(np.array(p.image_mask)[y: y+h, x: x+w]) face_p.image_mask = modules.images.resize_image(0, cropped_face_mask, face.width, face.height) face_proc = self.process_images(face_p, controlnet_input_face, self.controlnet_weight_for_face, preprocess_img_exist) print(face_proc.seed) face_img2img_results.append((face_proc.images[0], coord)) ### merge faces bg = proc.images[0] mask = self.get_mask() for face_img, coord in face_img2img_results: bg = merge_face(bg, face_img, coord, base_img_size, mask) proc.images[0] = bg return proc def get_depth_map(self, mask, depth_path ,img_basename, is_invert_mask): depth_img_path = os.path.join( depth_path , img_basename ) depth = None if os.path.isfile( depth_img_path ): depth = Image.open(depth_img_path) else: # try 00001-0000.png os.path.splitext(img_basename)[0] depth_img_path = os.path.join( depth_path , os.path.splitext(img_basename)[0] + "-0000.png" ) if os.path.isfile( depth_img_path ): depth = Image.open(depth_img_path) if depth: if mask: mask_array = np.array(mask) depth_array = np.array(depth) if is_invert_mask == False: depth_array[mask_array[:,:,0] == 0] = 0 else: depth_array[mask_array[:,:,0] != 0] = 0 depth = Image.fromarray(depth_array) tmp_path = os.path.join( depth_path , "tmp" ) os.makedirs(tmp_path, exist_ok=True) tmp_path = os.path.join( tmp_path , img_basename ) depth_array = depth_array.astype(np.uint16) cv2.imwrite(tmp_path, depth_array) mask = depth return depth!=None, mask ### auto tagging debug_count = 0 def get_masked_image(self, image, mask_image): if mask_image == None: return image.convert("RGB") mask = mask_image.convert('L') if self.is_invert_mask: mask = ImageOps.invert(mask) crop_region = masking.get_crop_region(np.array(mask), 0) # crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) # x1, y1, x2, y2 = crop_region image = image.crop(crop_region).convert("RGB") mask = mask.crop(crop_region) base_img = Image.new("RGB", image.size, (255, 190, 200)) image = Image.composite( image, base_img, mask ) # image.save("scripts/get_masked_image_test_"+ str(self.debug_count) + ".png") # self.debug_count += 1 return image def interrogate_deepdanbooru(self, imgs, masks): prompts_dict = {} cause_err = False try: deepbooru.model.start() for img,mask in zip(imgs,masks): key = os.path.basename(img) print(key + " interrogate deepdanbooru") image = Image.open(img) mask_image = Image.open(mask) if mask else None image = self.get_masked_image(image, mask_image) prompt = deepbooru.model.tag_multi(image) prompts_dict[key] = prompt except Exception as e: import traceback traceback.print_exc() print(e) cause_err = True finally: deepbooru.model.stop() if cause_err: print("Exception occurred during auto-tagging(deepdanbooru)") return Processed() return prompts_dict def interrogate_clip(self, imgs, masks): from modules import devices, shared, lowvram, paths import importlib import models caption_list = [] prompts_dict = {} cause_err = False try: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.send_everything_to_cpu() devices.torch_gc() with paths.Prioritize("BLIP"): importlib.reload(models) shared.interrogator.load() for img,mask in zip(imgs,masks): key = os.path.basename(img) print(key + " generate caption") image = Image.open(img) mask_image = Image.open(mask) if mask else None image = self.get_masked_image(image, mask_image) caption = shared.interrogator.generate_caption(image) caption_list.append(caption) shared.interrogator.send_blip_to_ram() devices.torch_gc() for img,mask,caption in zip(imgs,masks,caption_list): key = os.path.basename(img) print(key + " interrogate clip") image = Image.open(img) mask_image = Image.open(mask) if mask else None image = self.get_masked_image(image, mask_image) clip_image = shared.interrogator.clip_preprocess(image).unsqueeze(0).type(shared.interrogator.dtype).to(devices.device_interrogate) res = "" with torch.no_grad(), devices.autocast(): image_features = shared.interrogator.clip_model.encode_image(clip_image).type(shared.interrogator.dtype) image_features /= image_features.norm(dim=-1, keepdim=True) for name, topn, items in shared.interrogator.categories(): matches = shared.interrogator.rank(image_features, items, top_count=topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" else: res += ", " + match prompts_dict[key] = (caption + res) except Exception as e: import traceback traceback.print_exc() print(e) cause_err = True finally: shared.interrogator.unload() if cause_err: print("Exception occurred during auto-tagging(blip/clip)") return Processed() return prompts_dict def remove_reserved_token(self, token_list): reserved_list = ["pink_background","simple_background","pink","pink_theme"] result_list = [] head_token = token_list[0] if head_token[2] == "normal": head_token_str = head_token[0].replace('pink background', '') token_list[0] = (head_token_str, head_token[1], head_token[2]) for token in token_list: if token[0] in reserved_list: continue result_list.append(token) return result_list def remove_blacklisted_token(self, token_list): black_list_path = os.path.join(self.prompts_dir, "blacklist.txt") if not os.path.isfile(black_list_path): print(black_list_path + " not found.") return token_list with open(black_list_path) as f: black_list = [s.strip() for s in f.readlines()] result_list = [] for token in token_list: if token[0] in black_list: continue result_list.append(token) token_list = result_list return token_list def add_token(self, token_list): add_list_path = os.path.join(self.prompts_dir, "add_token.txt") if not os.path.isfile(add_list_path): print(add_list_path + " not found.") if self.add_tag_replace_underscore: token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ] return token_list if not self.calc_parser: self.calc_parser = CalcParser() with open(add_list_path) as f: add_list = json.load(f) ''' [ { "target":"test_token", "min_score":0.8, "token": ["lora_name_A", "0.5"], "type":"lora" }, { "target":"test_token", "min_score":0.5, "token": ["bbbb", "score - 0.1"], "type":"normal" }, { "target":"test_token2", "min_score":0.8, "token": ["hypernet_name_A", "score"], "type":"hypernet" }, { "target":"test_token3", "min_score":0.0, "token": ["dddd", "score"], "type":"normal" } ] ''' result_list = [] for token in token_list: for add_item in add_list: if token[0] == add_item["target"]: if token[1] > add_item["min_score"]: # hit formula = str(add_item["token"][1]) formula = formula.replace("score",str(token[1])) print('Input: %s' % str(add_item["token"][1])) try: score = self.calc_parser.parse(formula) score = round(score, 3) except (ParseError, ZeroDivisionError) as e: print('Input: %s' % str(add_item["token"][1])) print('Error: %s' % e) print("ignore this token") continue print("score = " + str(score)) result_list.append( ( add_item["token"][0], score, add_item["type"] ) ) if self.add_tag_replace_underscore: token_list = [ (x[0].replace("_"," "), x[1], x[2]) for x in token_list ] token_list = token_list + result_list return token_list def create_prompts_dict(self, imgs, masks, auto_tag_mode): prompts_dict = {} if auto_tag_mode == "DeepDanbooru": raw_dict = self.interrogate_deepdanbooru(imgs, masks) elif auto_tag_mode == "CLIP": raw_dict = self.interrogate_clip(imgs, masks) repatter = re.compile(r'\((.+)\:([0-9\.]+)\)') for key, value_str in raw_dict.items(): value_list = [x.strip() for x in value_str.split(',')] value = [] for v in value_list: m = repatter.fullmatch(v) if m: value.append((m.group(1), float(m.group(2)), "normal")) else: value.append((v, 1, "no_score")) # print(value) value = self.remove_reserved_token(value) # print(value) value = self.remove_blacklisted_token(value) # print(value) value = self.add_token(value) # print(value) def create_token_str(x): print(x) if x[2] == "no_score": return x[0] elif x[2] == "lora": return "" elif x[2] == "hypernet": return "" else: return "(" + x[0] + ":" + str(x[1]) + ")" value_list = [create_token_str(x) for x in value] value = ",".join(value_list) prompts_dict[key] = value return prompts_dict def load_prompts_dict(self, imgs, default_token): prompts_path = os.path.join(self.prompts_dir, "prompts.txt") if not os.path.isfile(prompts_path): print(prompts_path + " not found.") return {} prompts_dict = {} print(prompts_path + " found!!") print("skip auto tagging.") with open(prompts_path) as f: raw_dict = json.load(f) prev_value = default_token for img in imgs: key = os.path.basename(img) if key in raw_dict: prompts_dict[key] = raw_dict[key] prev_value = raw_dict[key] else: prompts_dict[key] = prev_value return prompts_dict def process_images(self, p, input_img, controlnet_weight, input_img_is_preprocessed): p.control_net_input_image = input_img p.control_net_weight = controlnet_weight if input_img_is_preprocessed: p.control_net_module = "none" return process_images(p) # This is where the additional processing is implemented. The parameters include # self, the model object "p" (a StableDiffusionProcessing class, see # processing.py), and the parameters returned by the ui method. # Custom functions can be defined here, and additional libraries can be imported # to be used in processing. The return value should be a Processed object, which is # what is returned by the process_images method. def run(self, p, project_dir, generation_test, mask_mode, inpaint_area, use_depth, img2img_repeat_count, inc_seed, auto_tag_mode, add_tag_to_head, add_tag_replace_underscore, is_facecrop, face_detection_method, face_crop_resolution, max_crop_size, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_weight, controlnet_weight_for_face, disable_facecrop_lpbk_last_time, use_preprocess_img): args = locals() if generation_test: print("generation_test") test_proj_dir = os.path.join( get_my_dir() , "generation_test_proj") os.makedirs(test_proj_dir, exist_ok=True) test_video_key_path = os.path.join( test_proj_dir , "video_key") os.makedirs(test_video_key_path, exist_ok=True) test_video_mask_path = os.path.join( test_proj_dir , "video_mask") os.makedirs(test_video_mask_path, exist_ok=True) controlnet_input_path = os.path.join(test_proj_dir, "controlnet_input") if os.path.isdir(controlnet_input_path): shutil.rmtree(controlnet_input_path) remove_pngs_in_dir(test_video_key_path) remove_pngs_in_dir(test_video_mask_path) test_base_img = p.init_images[0] test_mask = p.image_mask if test_base_img: test_base_img.save( os.path.join( test_video_key_path , "00001.png") ) if test_mask: test_mask.save( os.path.join( test_video_mask_path , "00001.png") ) project_dir = test_proj_dir else: if not os.path.isdir(project_dir): print("project_dir not found") return Processed() self.controlnet_weight = controlnet_weight self.controlnet_weight_for_face = controlnet_weight_for_face self.add_tag_replace_underscore = add_tag_replace_underscore self.face_crop_resolution = face_crop_resolution if p.seed == -1: p.seed = int(random.randrange(4294967294)) if mask_mode == "Normal": p.inpainting_mask_invert = 0 elif mask_mode == "Invert": p.inpainting_mask_invert = 1 if inpaint_area in (0,1): #"Whole picture","Only masked" p.inpaint_full_res = inpaint_area is_invert_mask = False if mask_mode == "Invert": is_invert_mask = True inv_path = os.path.join(project_dir, "inv") if not os.path.isdir(inv_path): print("project_dir/inv not found") return Processed() org_key_path = os.path.join(inv_path, "video_key") img2img_key_path = os.path.join(inv_path, "img2img_key") depth_path = os.path.join(inv_path, "video_key_depth") preprocess_path = os.path.join(inv_path, "controlnet_preprocess") controlnet_input_path = os.path.join(inv_path, "controlnet_input") self.prompts_dir = inv_path self.is_invert_mask = True else: org_key_path = os.path.join(project_dir, "video_key") img2img_key_path = os.path.join(project_dir, "img2img_key") depth_path = os.path.join(project_dir, "video_key_depth") preprocess_path = os.path.join(project_dir, "controlnet_preprocess") controlnet_input_path = os.path.join(project_dir, "controlnet_input") self.prompts_dir = project_dir self.is_invert_mask = False frame_mask_path = os.path.join(project_dir, "video_mask") if not use_depth: depth_path = None if not os.path.isdir(org_key_path): print(org_key_path + " not found") print("Generate key frames first." if is_invert_mask == False else \ "Generate key frames first.(with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Invert setting)") return Processed() if not os.path.isdir(controlnet_input_path): print(controlnet_input_path + " not found") print("copy {0} -> {1}".format(org_key_path,controlnet_input_path)) os.makedirs(controlnet_input_path, exist_ok=True) imgs = glob.glob( os.path.join(org_key_path ,"*.png") ) for img in imgs: img_basename = os.path.basename(img) shutil.copy( img , os.path.join(controlnet_input_path, img_basename) ) remove_pngs_in_dir(img2img_key_path) os.makedirs(img2img_key_path, exist_ok=True) def get_mask_of_img(img): img_basename = os.path.basename(img) if mask_mode != "None": mask_path = os.path.join( frame_mask_path , img_basename ) if os.path.isfile( mask_path ): return mask_path return "" def get_pair_of_img(img, target_dir): img_basename = os.path.basename(img) pair_path = os.path.join( target_dir , img_basename ) if os.path.isfile( pair_path ): return pair_path print("!!! pair of "+ img + " not in " + target_dir) return "" def get_controlnet_input_img(img): pair_img = get_pair_of_img(img, controlnet_input_path) if not pair_img: pair_img = get_pair_of_img(img, org_key_path) return pair_img imgs = glob.glob( os.path.join(org_key_path ,"*.png") ) masks = [ get_mask_of_img(i) for i in imgs ] controlnet_input_imgs = [ get_controlnet_input_img(i) for i in imgs ] for mask in masks: m = cv2.imread(mask) if mask else None if m is not None: if m.max() == 0: print("{0} blank mask found".format(mask)) if m.ndim == 2: m[0,0] = 255 else: m = m[:,:,:3] m[0,0,0:3] = 255 cv2.imwrite(mask, m) ###################### # face crop face_coords_dict={} for img,mask in zip(imgs,masks): face_detected = False if is_facecrop: image = Image.open(img) mask_image = Image.open(mask) if mask else None face_coords = self.detect_face(image, mask_image, face_detection_method, max_crop_size) if face_coords is None or len(face_coords) == 0: print("no face detected") else: print("face detected") face_detected = True key = os.path.basename(img) face_coords_dict[key] = face_coords if face_detected else [] with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"faces.txt" ), "w") as f: f.write(json.dumps(face_coords_dict,indent=4)) ###################### # prompts prompts_dict = self.load_prompts_dict(imgs, p.prompt) if not prompts_dict: if auto_tag_mode != "None": prompts_dict = self.create_prompts_dict(imgs, masks, auto_tag_mode) for key, value in prompts_dict.items(): prompts_dict[key] = (value + "," + p.prompt) if add_tag_to_head else (p.prompt + "," + value) else: for img in imgs: key = os.path.basename(img) prompts_dict[key] = p.prompt with open( os.path.join( project_dir if is_invert_mask == False else inv_path, time.strftime("%Y%m%d-%H%M%S_") + "prompts.txt" ), "w") as f: f.write(json.dumps(prompts_dict,indent=4)) ###################### # img2img for img, mask, controlnet_input_img, face_coords, prompts in zip(imgs, masks, controlnet_input_imgs, face_coords_dict.values(), prompts_dict.values()): # Generation cancelled. if shared.state.interrupted: print("Generation cancelled.") break image = Image.open(img) mask_image = Image.open(mask) if mask else None img_basename = os.path.basename(img) _p = copy.copy(p) _p.init_images=[image] _p.image_mask = mask_image _p.prompt = prompts resized_mask = None repeat_count = img2img_repeat_count if mask_mode != "None" or use_depth: if use_depth: depth_found, _p.image_mask = self.get_depth_map( mask_image, depth_path ,img_basename, is_invert_mask ) mask_image = _p.image_mask if depth_found: _p.inpainting_mask_invert = 0 preprocess_img_exist = False controlnet_input_base_img = Image.open(controlnet_input_img) if controlnet_input_img else None if use_preprocess_img: preprocess_img = os.path.join(preprocess_path, img_basename) if os.path.isfile( preprocess_img ): controlnet_input_base_img = Image.open(preprocess_img) preprocess_img_exist = True if face_coords: controlnet_input_face_imgs, _ = self.face_img_crop(controlnet_input_base_img, face_coords, face_area_magnification) while repeat_count > 0: if disable_facecrop_lpbk_last_time: if img2img_repeat_count > 1: if repeat_count == 1: face_coords = None if face_coords: proc = self.face_crop_img2img(_p, face_coords, face_denoising_strength, face_area_magnification, enable_face_prompt, face_prompt, controlnet_input_base_img, controlnet_input_face_imgs, preprocess_img_exist) else: proc = self.process_images(_p, controlnet_input_base_img, self.controlnet_weight, preprocess_img_exist) print(proc.seed) repeat_count -= 1 if repeat_count > 0: _p.init_images=[proc.images[0]] if mask_image is not None and resized_mask is None: resized_mask = resize_img(np.array(mask_image) , proc.images[0].width, proc.images[0].height) resized_mask = Image.fromarray(resized_mask) _p.image_mask = resized_mask _p.seed += inc_seed proc.images[0].save( os.path.join( img2img_key_path , img_basename ) ) with open( os.path.join( project_dir if is_invert_mask == False else inv_path,"param.txt" ), "w") as f: f.write(pprint.pformat(proc.info)) with open( os.path.join( project_dir if is_invert_mask == False else inv_path ,"args.txt" ), "w") as f: f.write(pprint.pformat(args)) return proc