from __future__ import annotations from enum import IntEnum from functools import partial, reduce from math import dist import cv2 import numpy as np from PIL import Image, ImageChops from adetailer.args import MASK_MERGE_INVERT from adetailer.common import PredictOutput class SortBy(IntEnum): NONE = 0 LEFT_TO_RIGHT = 1 CENTER_TO_EDGE = 2 AREA = 3 class MergeInvert(IntEnum): NONE = 0 MERGE = 1 MERGE_INVERT = 2 def _dilate(arr: np.ndarray, value: int) -> np.ndarray: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value)) return cv2.dilate(arr, kernel, iterations=1) def _erode(arr: np.ndarray, value: int) -> np.ndarray: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value)) return cv2.erode(arr, kernel, iterations=1) def dilate_erode(img: Image.Image, value: int) -> Image.Image: """ The dilate_erode function takes an image and a value. If the value is positive, it dilates the image by that amount. If the value is negative, it erodes the image by that amount. Parameters ---------- img: PIL.Image.Image the image to be processed value: int kernel size of dilation or erosion Returns ------- PIL.Image.Image The image that has been dilated or eroded """ if value == 0: return img arr = np.array(img) arr = _dilate(arr, value) if value > 0 else _erode(arr, -value) return Image.fromarray(arr) def offset(img: Image.Image, x: int = 0, y: int = 0) -> Image.Image: """ The offset function takes an image and offsets it by a given x(→) and y(↑) value. Parameters ---------- mask: Image.Image Pass the mask image to the function x: int → y: int ↑ Returns ------- PIL.Image.Image A new image that is offset by x and y """ return ImageChops.offset(img, x, -y) def is_all_black(img: Image.Image) -> bool: arr = np.array(img) return cv2.countNonZero(arr) == 0 def bbox_area(bbox: list[float]): return (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) def mask_preprocess( masks: list[Image.Image], kernel: int = 0, x_offset: int = 0, y_offset: int = 0, merge_invert: int | MergeInvert | str = MergeInvert.NONE, ) -> list[Image.Image]: """ The mask_preprocess function takes a list of masks and preprocesses them. It dilates and erodes the masks, and offsets them by x_offset and y_offset. Parameters ---------- masks: list[Image.Image] A list of masks kernel: int kernel size of dilation or erosion x_offset: int → y_offset: int ↑ Returns ------- list[Image.Image] A list of processed masks """ if not masks: return [] if x_offset != 0 or y_offset != 0: masks = [offset(m, x_offset, y_offset) for m in masks] if kernel != 0: masks = [dilate_erode(m, kernel) for m in masks] masks = [m for m in masks if not is_all_black(m)] masks = mask_merge_invert(masks, mode=merge_invert) return masks # Bbox sorting def _key_left_to_right(bbox: list[float]) -> float: """ Left to right Parameters ---------- bbox: list[float] list of [x1, y1, x2, y2] """ return bbox[0] def _key_center_to_edge(bbox: list[float], *, center: tuple[float, float]) -> float: """ Center to edge Parameters ---------- bbox: list[float] list of [x1, y1, x2, y2] image: Image.Image the image """ bbox_center = ((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2) return dist(center, bbox_center) def _key_area(bbox: list[float]) -> float: """ Large to small Parameters ---------- bbox: list[float] list of [x1, y1, x2, y2] """ return -bbox_area(bbox) def sort_bboxes( pred: PredictOutput, order: int | SortBy = SortBy.NONE ) -> PredictOutput: if order == SortBy.NONE or len(pred.bboxes) <= 1: return pred if order == SortBy.LEFT_TO_RIGHT: key = _key_left_to_right elif order == SortBy.CENTER_TO_EDGE: width, height = pred.preview.size center = (width / 2, height / 2) key = partial(_key_center_to_edge, center=center) elif order == SortBy.AREA: key = _key_area else: raise RuntimeError items = len(pred.bboxes) idx = sorted(range(items), key=lambda i: key(pred.bboxes[i])) pred.bboxes = [pred.bboxes[i] for i in idx] pred.masks = [pred.masks[i] for i in idx] return pred # Filter by ratio def is_in_ratio(bbox: list[float], low: float, high: float, orig_area: int) -> bool: area = bbox_area(bbox) return low <= area / orig_area <= high def filter_by_ratio(pred: PredictOutput, low: float, high: float) -> PredictOutput: if not pred.bboxes: return pred w, h = pred.preview.size orig_area = w * h items = len(pred.bboxes) idx = [i for i in range(items) if is_in_ratio(pred.bboxes[i], low, high, orig_area)] pred.bboxes = [pred.bboxes[i] for i in idx] pred.masks = [pred.masks[i] for i in idx] return pred # Merge / Invert def mask_merge(masks: list[Image.Image]) -> list[Image.Image]: arrs = [np.array(m) for m in masks] arr = reduce(cv2.bitwise_or, arrs) return [Image.fromarray(arr)] def mask_invert(masks: list[Image.Image]) -> list[Image.Image]: return [ImageChops.invert(m) for m in masks] def mask_merge_invert( masks: list[Image.Image], mode: int | MergeInvert | str ) -> list[Image.Image]: if isinstance(mode, str): mode = MASK_MERGE_INVERT.index(mode) if mode == MergeInvert.NONE or not masks: return masks if mode == MergeInvert.MERGE: return mask_merge(masks) if mode == MergeInvert.MERGE_INVERT: merged = mask_merge(masks) return mask_invert(merged) raise RuntimeError