import random import cv2 import numpy as np import os import copy import csv from PIL import Image from modules import images from modules.shared import opts from scripts.mergers.mergers import TYPES,smerge,simggen,filenamecutter,draw_origin,wpreseter from scripts.mergers.model_util import usemodelgen hear = True hearm = False state_mergen = False numadepth = [] def freezetime(): global state_mergen state_mergen = True def numanager(normalstart,xtype,xmen,ytype,ymen,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size): global numadepth grids = [] sep = "|" if sep in xmen: xmens = xmen.split(sep) xmen = xmens[0] if seed =="-1": seed = str(random.randrange(4294967294)) for men in xmens[1:]: numaker(xtype,men,ytype,ymen,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size) elif sep in ymen: ymens = ymen.split(sep) ymen = ymens[0] if seed =="-1": seed = str(random.randrange(4294967294)) for men in ymens[1:]: numaker(xtype,xmen,ytype,men,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size) if normalstart: result,currentmodel,xyimage,a,b,c= sgenxyplot(xtype,xmen,ytype,ymen,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode, useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size) if xyimage is not None:grids =[xyimage[0]] else:print(result) else: if numadepth ==[]: return "no reservation",*[None]*5 result=currentmodel=xyimage=a=b=c = None while True: for i,row in enumerate(numadepth): if row[1] =="waiting": numadepth[i][1] = "Operating" try: result,currentmodel,xyimage,a,b,c = sgenxyplot(*row[2:]) except Exception as e: print(e) numadepth[i][1] = "Error" else: if xyimage is not None: grids.append(xyimage[0]) numadepth[i][1] = "Finished" else: print(result) numadepth[i][1] = "Error" wcounter = 0 for row in numadepth: if row[1] != "waiting": wcounter += 1 if wcounter == len(numadepth): break return result,currentmodel,grids,a,b,c def numaker(xtype,xmen,ytype,ymen,esettings, #msettings=[weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode,useblocks,custom_name,save_sets,id_sets,wpresets] weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode, useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size): global numadepth numadepth.append([len(numadepth)+1,"waiting",xtype,xmen,ytype,ymen,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode, useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size]) return numalistmaker(copy.deepcopy(numadepth)) def nulister(redel): global numadepth if redel == False: return numalistmaker(copy.deepcopy(numadepth)) if redel ==-1: numadepth = [] else: try:del numadepth[int(redel-1)] except Exception as e:print(e) return numalistmaker(copy.deepcopy(numadepth)) def numalistmaker(numa): if numa ==[]: return [["no data","",""],] for i,r in enumerate(numa): r[2] = TYPES[int(r[2])] r[4] = TYPES[int(r[4])] numa[i] = r[0:6]+r[8:11]+r[12:16]+r[6:8] return numa def caster(news,hear): if hear: print(news) def sgenxyplot(xtype,xmen,ytype,ymen,esettings, weights_a,weights_b,model_a,model_b,model_c,alpha,beta,mode,calcmode, useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor, prompt,nprompt,steps,sampler,cfg,seed,w,h, hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size): global hear esettings = " ".join(esettings) #type[0:none,1:aplha,2:beta,3:seed,4:mbw,5:model_A,6:model_B,7:model_C,8:pinpoint 9:deep] xtype = TYPES[xtype] ytype = TYPES[ytype] if ytype == "none": ymen = "" modes=["Weight" ,"Add" ,"Triple","Twice"] xs=ys=0 weights_a_in=weights_b_in="0" deepprint = True if "print change" in esettings else False def castall(hear): if hear :print(f"xmen:{xmen}, ymen:{ymen}, xtype:{xtype}, ytype:{ytype}, weights_a:{weights_a_in}, weights_b:{weights_b_in}, model_A:{model_a},model_B :{model_b}, model_C:{model_c}, alpha:{alpha},\ beta :{beta}, mode:{mode}, blocks:{useblocks}") pinpoint = "pinpoint blocks" in xtype or "pinpoint blocks" in ytype usebeta = modes[2] in mode or modes[3] in mode #check and adjust format print(f"XY plot start, mode:{mode}, X: {xtype}, Y: {ytype}, MBW: {useblocks}") castall(hear) None5 = [None,None,None,None,None] if xmen =="": return "ERROR: parameter X is empty",*None5 if ymen =="" and not ytype=="none": return "ERROR: parameter Y is empty",*None5 if model_a ==[] and not ("model_A" in xtype or "model_A" in ytype):return f"ERROR: model_A is not selected",*None5 if model_b ==[] and not ("model_B" in xtype or "model_B" in ytype):return f"ERROR: model_B is not selected",*None5 if model_c ==[] and usebeta and not ("model_C" in xtype or "model_C" in ytype):return "ERROR: model_C is not selected",*None5 if xtype == ytype: return "ERROR: same type selected for X,Y",*None5 if useblocks: weights_a_in=wpreseter(weights_a,wpresets) weights_b_in=wpreseter(weights_b,wpresets) #for X only plot, use same seed if seed == -1: seed = int(random.randrange(4294967294)) #for XY plot, use same seed def dicedealer(zs): for i,z in enumerate(zs): if z =="-1": zs[i] = str(random.randrange(4294967294)) print(f"the die was thrown : {zs}") #adjust parameters, alpha,beta,models,seed: list of single parameters, mbw(no beta):list of text,mbw(usebeta); list of pair text def adjuster(zmen,ztype,aztype): if "mbw" in ztype or "prompt" in ztype:#men separated by newline zs = zmen.splitlines() caster(zs,hear) if "mbw alpha and beta" in ztype: zs = [zs[i:i+2] for i in range(0,len(zs),2)] caster(zs,hear) elif "elemental" in ztype: zs = zmen.split("\n\n") else: if "pinpoint element" in ztype: zmen = zmen.replace("\n",",") if "effective" in ztype: zmen = ","+zmen zmen = zmen.replace("\n",",") zs = [z.strip() for z in zmen.split(',')] caster(zs,hear) if "alpha" in ztype and "effective" in aztype: zs = [zs[0]] if "seed" in ztype:dicedealer(zs) if "alpha" == ztype or "beta" == ztype: oz = [] for z in zs: try: float(z) oz.append(z) except: pass zs = oz return zs xs = adjuster(xmen,xtype,ytype) ys = adjuster(ymen,ytype,xtype) #in case beta selected but mode is Weight sum or Add or Diff if ("beta" in xtype or "beta" in ytype) and (not usebeta and "tensor" not in calcmode): mode = modes[3] print(f"{modes[3]} mode automatically selected)") #in case mbw or pinpoint selected but useblocks not chekced if ("mbw" in xtype or "pinpoint blocks" in xtype) and not useblocks: useblocks = True print(f"MBW mode enabled") if ("mbw" in ytype or "pinpoint blocks" in ytype) and not useblocks: useblocks = True print(f"MBW mode enabled") xyimage=[] xcount =ycount=0 allcount = len(xs)*len(ys) #for STOP XY bottun flag = False global state_mergen state_mergen = False #type[0:none,1:aplha,2:beta,3:seed,4:mbw,5:model_A,6:model_B,7:model_C,8:pinpoint ] blockid=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"] #format ,IN00 IN03,IN04-IN09,OUT4,OUT05 def weightsdealer(x,xtype,y,weights): caster(f"weights from : {weights}",hear) zz = x if "pinpoint blocks" in xtype else y za = y if "pinpoint blocks" in xtype else x zz = [z.strip() for z in zz.split(' ')] weights_t = [w.strip() for w in weights.split(',')] if zz[0]!="NOT": flagger=[False]*26 changer = True else: flagger=[True]*26 changer = False for z in zz: if z =="NOT":continue if "-" in z: zt = [zt.strip() for zt in z.split('-')] if blockid.index(zt[1]) > blockid.index(zt[0]): flagger[blockid.index(zt[0]):blockid.index(zt[1])+1] = [changer]*(blockid.index(zt[1])-blockid.index(zt[0])+1) else: flagger[blockid.index(zt[1]):blockid.index(zt[0])+1] = [changer]*(blockid.index(zt[0])-blockid.index(zt[1])+1) else: flagger[blockid.index(z)] =changer for i,f in enumerate(flagger): if f:weights_t[i]=za outext = ",".join(weights_t) caster(f"weights changed: {outext}",hear) return outext def abdealer(z): if " " in z:return z.split(" ")[0],z.split(" ")[1] return z,z def xydealer(z,zt,azt): nonlocal alpha,beta,seed,weights_a_in,weights_b_in,model_a,model_b,model_c,deep,calcmode,prompt if pinpoint or "pinpoint element" in zt or "effective" in zt:return if "mbw" in zt: def weightser(z):return z, z.split(',',1)[0] if "mbw alpha and beta" in zt: weights_a_in,alpha = weightser(wpreseter(z[0],wpresets)) weights_b_in,beta = weightser(wpreseter(z[1],wpresets)) return elif "alpha" in zt: weights_a_in,alpha = weightser(wpreseter(z,wpresets)) return else: weights_b_in,beta = weightser(wpreseter(z,wpresets)) return if "and" in zt: alpha,beta = abdealer(z) return if "alpha" in zt and not "pinpoint element" in azt:alpha = z if "beta" in zt: beta = z if "seed" in zt:seed = int(z) if "model_A" in zt:model_a = z if "model_B" in zt:model_b = z if "model_C" in zt:model_c = z if "elemental" in zt:deep = z if "calcmode" in zt:calcmode = z if "prompt" in zt:prompt = z # plot start for y in ys: xydealer(y,ytype,xtype) xcount = 0 for x in xs: xydealer(x,xtype,ytype) if ("alpha" in xtype or "alpha" in ytype) and pinpoint: weights_a_in = weightsdealer(x,xtype,y,weights_a) weights_b_in = weights_b if ("beta" in xtype or "beta" in ytype) and pinpoint: weights_b_in = weightsdealer(x,xtype,y,weights_b) weights_a_in =weights_a if "pinpoint element" in xtype or "effective" in xtype: deep_in = deep +","+ str(x)+":"+ str(y) elif "pinpoint element" in ytype or "effective" in ytype: deep_in = deep +","+ str(y)+":"+ str(x) else: deep_in = deep print(f"XY plot: X: {xtype}, {str(x)}, Y: {ytype}, {str(y)} ({xcount+ycount*len(xs)+1}/{allcount})") if not (xtype=="seed" and xcount > 0): _ , currentmodel,modelid,theta_0,_=smerge(weights_a_in,weights_b_in, model_a,model_b,model_c, float(alpha),float(beta),mode,calcmode, useblocks,"","",id_sets,False,deep_in,tensor,deepprint = deepprint) usemodelgen(theta_0,model_a,currentmodel) # simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,mergeinfo="",id_sets=[],modelid = "no id"): image_temp = simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,currentmodel,id_sets,modelid) xyimage.append(image_temp[0][0]) xcount+=1 if state_mergen: flag = True break ycount+=1 if flag:break if flag and ycount ==1: xs = xs[:xcount] ys = [ys[0],] print(f"stopped at x={xcount},y={ycount}") elif flag: ys=ys[:ycount] print(f"stopped at x={xcount},y={ycount}") if "mbw alpha and beta" in xtype: xs = [f"alpha:({x[0]}),beta({x[1]})" for x in xs ] if "mbw alpha and beta" in ytype: ys = [f"alpha:({y[0]}),beta({y[1]})" for y in ys ] xs[0]=xtype+" = "+xs[0] #draw X label if ytype!=TYPES[0] or "model" in ytype:ys[0]=ytype+" = "+ys[0] #draw Y label if ys==[""]:ys = [" "] if "effective" in xtype or "effective" in ytype: xyimage,xs,ys = effectivechecker(xyimage,xs,ys,model_a,model_b,esettings) if not "grid" in esettings: gridmodel= makegridmodelname(model_a, model_b,model_c, useblocks,mode,xtype,ytype,alpha,beta,weights_a,weights_b,usebeta) grid = smakegrid(xyimage,xs,ys,gridmodel,image_temp[4]) xyimage.insert(0,grid) state_mergen = False return "Finished",currentmodel,xyimage,*image_temp[1:4] def smakegrid(imgs,xs,ys,currentmodel,p): ver_texts = [[images.GridAnnotation(y)] for y in ys] hor_texts = [[images.GridAnnotation(x)] for x in xs] w, h = imgs[0].size grid = Image.new('RGB', size=(len(xs) * w, len(ys) * h), color='black') for i, img in enumerate(imgs): grid.paste(img, box=(i % len(xs) * w, i // len(xs) * h)) grid = images.draw_grid_annotations(grid,w,h, hor_texts, ver_texts) grid = draw_origin(grid, currentmodel,w*len(xs),h*len(ys),w) if opts.grid_save: images.save_image(grid, opts.outdir_txt2img_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=p.seed, grid=True, p=p) return grid def makegridmodelname(model_a, model_b,model_c, useblocks,mode,xtype,ytype,alpha,beta,wa,wb,usebeta): model_a=filenamecutter(model_a) model_b=filenamecutter(model_b) model_c=filenamecutter(model_c) if not usebeta:beta,wb = "not used","not used" vals = "" modes=["Weight" ,"Add" ,"Triple","Twice"] if "mbw" in xtype: if "alpha" in xtype:wa = "X" if usebeta or " beta" in xtype:wb = "X" if "mbw" in ytype: if "alpha" in ytype:wa = "Y" if usebeta or " beta" in ytype:wb = "Y" wa = "alpha = " + wa wb = "beta = " + wb x = 50 while len(wa) > x: wa = wa[:x] + '\n' + wa[x:] x = x + 50 x = 50 while len(wb) > x: wb = wb[:x] + '\n' + wb[x:] x = x + 50 if "model" in xtype: if "A" in xtype:model_a = "model A" elif "B" in xtype:model_b="model B" elif "C" in xtype:model_c="model C" if "model" in ytype: if "A" in ytype:model_a = "model A" elif "B" in ytype:model_b="model B" elif "C" in ytype:model_c="model C" if modes[1] in mode: currentmodel =f"{model_a} \n {model_b} - {model_c})\n x alpha" elif modes[2] in mode: currentmodel =f"{model_a} x \n(1-alpha-beta) {model_b} x alpha \n+ {model_c} x beta" elif modes[3] in mode: currentmodel =f"({model_a} x(1-alpha) \n + {model_b} x alpha)*(1-beta)\n+ {model_c} x beta" else: currentmodel =f"{model_a} x (1-alpha) \n {model_b} x alpha" if "alpha" in xtype:alpha = "X" if "beta" in xtype:beta = "X" if "alpha" in ytype:alpha = "Y" if "beta" in ytype:beta = "Y" if "mbw" in xtype: if "alpha" in xtype: alpha = "X" if "beta" in xtype or usebeta: beta = "X" if "mbw" in ytype: if "alpha" in ytype: alpha = "Y" if "beta" in ytype or usebeta: beta = "Y" vals = f"\nalpha = {alpha},beta = {beta}" if not useblocks else f"\n{wa}\n{wb}" currentmodel = currentmodel+vals return currentmodel def effectivechecker(imgs,xs,ys,model_a,model_b,esettings): diffs = [] outnum =[] im1 = np.array(imgs[0]) model_a = filenamecutter(model_a) model_b = filenamecutter(model_b) dir = os.path.join(opts.outdir_txt2img_samples,f"{model_a+model_b}","difgif") if "gif" in esettings: try: os.makedirs(dir) except FileExistsError: pass ls,ss = (xs.copy(),ys.copy()) if len(xs) > len(ys) else (ys.copy(),xs.copy()) for i in range(len(imgs)-1): im2 = np.array(imgs[i+1]) abs_diff = cv2.absdiff(im2 , im1) abs_diff_t = cv2.threshold(abs_diff, 5, 255, cv2.THRESH_BINARY)[1] res = abs_diff_t.astype(np.uint8) percentage = (np.count_nonzero(res) * 100)/ res.size abs_diff = cv2.bitwise_not(abs_diff) outnum.append(percentage) abs_diff = Image.fromarray(abs_diff) diffs.append(abs_diff) if "gif" in esettings: gifpath = gifpath_t = os.path.join(dir,ls[i+1].replace(":","_")+".gif") is_file = os.path.isfile(gifpath) j = 0 while is_file: gifpath = gifpath_t.replace(".gif",f"_{j}.gif") print(gifpath) is_file = os.path.isfile(gifpath) j = j + 1 imgs[0].save(gifpath, save_all=True, append_images=[imgs[i+1]], optimize=False, duration=1000, loop=0) nums = [] outs = [] ls = ls[1:] for i in range(len(ls)): nums.append([ls[i],outnum[i]]) ls[i] = ls[i] + "\n Diff : " + str(round(outnum[i],3)) + "%" if "csv" in esettings: try: os.makedirs(dir) except FileExistsError: pass filepath = os.path.join(dir, f"{model_a+model_b}.csv") with open(filepath, "a", newline="") as f: writer = csv.writer(f) writer.writerows(nums) if len(ys) > len (xs): for diff,img in zip(diffs,imgs[1:]): outs.append(diff) outs.append(img) outs.append(imgs[0]) ss = ["diff",ss[0],"source"] return outs,ss,ls else: outs = [imgs[0]]*len(diffs) + imgs[1:]+ diffs ss = ["source",ss[0],"diff"] return outs,ls,ss