--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilBERT-infoExtract-v3 results: [] --- # distilBERT-infoExtract-v3 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an [conllpp dataset](https://huggingface.co/datasets/conllpp). It achieves the following results on the evaluation set: - Loss: 0.0871 - Precision: 0.9239 - Recall: 0.9440 - F1: 0.9338 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0945 | 1.0 | 1756 | 0.0958 | 0.8746 | 0.9170 | 0.8953 | 0.9736 | | 0.0521 | 2.0 | 3512 | 0.0727 | 0.9090 | 0.9276 | 0.9182 | 0.9810 | | 0.0334 | 3.0 | 5268 | 0.0736 | 0.9091 | 0.9372 | 0.9229 | 0.9827 | | 0.0149 | 4.0 | 7024 | 0.0755 | 0.9248 | 0.9411 | 0.9329 | 0.9847 | | 0.0079 | 5.0 | 8780 | 0.0847 | 0.9216 | 0.9433 | 0.9323 | 0.9840 | | 0.0075 | 6.0 | 10536 | 0.0871 | 0.9239 | 0.9440 | 0.9338 | 0.9843 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2