--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - dpo - generated_from_trainer model-index: - name: Llama0-3-8b-v0.1-p-0.05-lr6e-7-e1 results: [] --- # Llama0-3-8b-v0.1-p-0.05-lr6e-7-e1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6348 - Rewards/chosen: -0.7856 - Rewards/rejected: -0.8817 - Rewards/accuracies: 0.5766 - Rewards/margins: 0.0961 - Logps/rejected: -174.9295 - Logps/chosen: -166.8561 - Logits/rejected: 0.2248 - Logits/chosen: 0.2123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6639 | 0.2137 | 100 | 0.6632 | -0.0650 | -0.0751 | 0.5968 | 0.0101 | -94.2649 | -94.7914 | 0.0767 | 0.0572 | | 0.6507 | 0.4275 | 200 | 0.6492 | -0.2974 | -0.3355 | 0.6008 | 0.0381 | -120.3051 | -118.0318 | 0.1386 | 0.1215 | | 0.6383 | 0.6412 | 300 | 0.6397 | -0.6120 | -0.6852 | 0.5887 | 0.0732 | -155.2713 | -149.4875 | 0.2203 | 0.2063 | | 0.6362 | 0.8549 | 400 | 0.6356 | -0.7457 | -0.8367 | 0.5766 | 0.0910 | -170.4306 | -162.8660 | 0.2216 | 0.2081 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0