tomaarsen HF staff commited on
Commit
6709351
·
verified ·
1 Parent(s): 7eae739

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:100231
11
+ - loss:CachedMultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ widget:
14
+ - source_sentence: who ordered the charge of the light brigade
15
+ sentences:
16
+ - Charge of the Light Brigade The Charge of the Light Brigade was a charge of British
17
+ light cavalry led by Lord Cardigan against Russian forces during the Battle of
18
+ Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall commander
19
+ of the British forces, had intended to send the Light Brigade to prevent the Russians
20
+ from removing captured guns from overrun Turkish positions, a task well-suited
21
+ to light cavalry.
22
+ - UNICEF The United Nations International Children's Emergency Fund was created
23
+ by the United Nations General Assembly on 11 December 1946, to provide emergency
24
+ food and healthcare to children in countries that had been devastated by World
25
+ War II. The Polish physician Ludwik Rajchman is widely regarded as the founder
26
+ of UNICEF and served as its first chairman from 1946. On Rajchman's suggestion,
27
+ the American Maurice Pate was appointed its first executive director, serving
28
+ from 1947 until his death in 1965.[5][6] In 1950, UNICEF's mandate was extended
29
+ to address the long-term needs of children and women in developing countries everywhere.
30
+ In 1953 it became a permanent part of the United Nations System, and the words
31
+ "international" and "emergency" were dropped from the organization's name, making
32
+ it simply the United Nations Children's Fund, retaining the original acronym,
33
+ "UNICEF".[3]
34
+ - Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American former
35
+ college basketball player who played for the UCF Knights men's basketball team
36
+ of Conference USA.[1] He is the son of retired Hall of Fame basketball player
37
+ Michael Jordan.
38
+ - source_sentence: what part of the cow is the rib roast
39
+ sentences:
40
+ - Standing rib roast A standing rib roast, also known as prime rib, is a cut of
41
+ beef from the primal rib, one of the nine primal cuts of beef. While the entire
42
+ rib section comprises ribs six through 12, a standing rib roast may contain anywhere
43
+ from two to seven ribs.
44
+ - Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving", just
45
+ before New Directions loses at Sectionals to the Warblers, and they spend Christmas
46
+ together in New York City.[29][30] Though he and Kurt continue to be on good terms,
47
+ Blaine finds himself developing a crush on his best friend, Sam, which he knows
48
+ will come to nothing as he knows Sam is not gay; the two of them team up to find
49
+ evidence that the Warblers cheated at Sectionals, which means New Directions will
50
+ be competing at Regionals. He ends up going to the Sadie Hawkins dance with Tina
51
+ Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him, but as friends
52
+ only.[31] When Kurt comes to Lima for the wedding of glee club director Will (Matthew
53
+ Morrison) and Emma (Jayma Mays)—which Emma flees—he and Blaine make out beforehand,
54
+ and sleep together afterward, though they do not resume a permanent relationship.[32]
55
+ - 'Soviet Union The Soviet Union (Russian: Сове́тский Сою́з, tr. Sovétsky Soyúz,
56
+ IPA: [sɐˈvʲɛt͡skʲɪj sɐˈjus] ( listen)), officially the Union of Soviet Socialist
57
+ Republics (Russian: Сою́з Сове́тских Социалисти́ческих Респу́блик, tr. Soyúz Sovétskikh
58
+ Sotsialistícheskikh Respúblik, IPA: [sɐˈjus sɐˈvʲɛtskʲɪx sətsɨəlʲɪsˈtʲitɕɪskʲɪx
59
+ rʲɪˈspublʲɪk] ( listen)), abbreviated as the USSR (Russian: СССР, tr. SSSR), was
60
+ a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union
61
+ of multiple national Soviet republics,[a] its government and economy were highly
62
+ centralized. The country was a one-party state, governed by the Communist Party
63
+ with Moscow as its capital in its largest republic, the Russian Soviet Federative
64
+ Socialist Republic. The Russian nation had constitutionally equal status among
65
+ the many nations of the union but exerted de facto dominance in various respects.[7]
66
+ Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk.
67
+ The Soviet Union was one of the five recognized nuclear weapons states and possessed
68
+ the largest stockpile of weapons of mass destruction.[8] It was a founding permanent
69
+ member of the United Nations Security Council, as well as a member of the Organization
70
+ for Security and Co-operation in Europe (OSCE) and the leading member of the Council
71
+ for Mutual Economic Assistance (CMEA) and the Warsaw Pact.'
72
+ - source_sentence: what is the current big bang theory season
73
+ sentences:
74
+ - Byzantine army From the seventh to the 12th centuries, the Byzantine army was
75
+ among the most powerful and effective military forces in the world – neither
76
+ Middle Ages Europe nor (following its early successes) the fracturing Caliphate
77
+ could match the strategies and the efficiency of the Byzantine army. Restricted
78
+ to a largely defensive role in the 7th to mid-9th centuries, the Byzantines developed
79
+ the theme-system to counter the more powerful Caliphate. From the mid-9th century,
80
+ however, they gradually went on the offensive, culminating in the great conquests
81
+ of the 10th century under a series of soldier-emperors such as Nikephoros II Phokas,
82
+ John Tzimiskes and Basil II. The army they led was less reliant on the militia
83
+ of the themes; it was by now a largely professional force, with a strong and well-drilled
84
+ infantry at its core and augmented by a revived heavy cavalry arm. With one of
85
+ the most powerful economies in the world at the time, the Empire had the resources
86
+ to put to the field a powerful host when needed, in order to reclaim its long-lost
87
+ territories.
88
+ - The Big Bang Theory The Big Bang Theory is an American television sitcom created
89
+ by Chuck Lorre and Bill Prady, both of whom serve as executive producers on the
90
+ series, along with Steven Molaro. All three also serve as head writers. The show
91
+ premiered on CBS on September 24, 2007.[3] The series' tenth season premiered
92
+ on September 19, 2016.[4] In March 2017, the series was renewed for two additional
93
+ seasons, bringing its total to twelve, and running through the 2018–19 television
94
+ season. The eleventh season is set to premiere on September 25, 2017.[5]
95
+ - 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball Tournament
96
+ was held from May 20 through June 8, 2016 as the final part of the 2016 NCAA Division
97
+ I softball season. The 64 NCAA Division I college softball teams were to be selected
98
+ out of an eligible 293 teams on May 15, 2016. Thirty-two teams were awarded an
99
+ automatic bid as champions of their conference, and thirty-two teams were selected
100
+ at-large by the NCAA Division I softball selection committee. The tournament culminated
101
+ with eight teams playing in the 2016 Women's College World Series at ASA Hall
102
+ of Fame Stadium in Oklahoma City in which the Oklahoma Sooners were crowned the
103
+ champions.
104
+ - source_sentence: what happened to tates mom on days of our lives
105
+ sentences:
106
+ - 'Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara (born May
107
+ 10, 1956),[1] is an American actress, voice actress, singer and painter. O''Hara
108
+ began her career as a Broadway actress in 1983 when she portrayed Ellie May Chipley
109
+ in the musical Showboat. In 1991, she made her motion picture debut in Disney''s
110
+ Beauty and the Beast, in which she voiced the film''s heroine, Belle. Following
111
+ the critical and commercial success of Beauty and the Beast, O''Hara reprised
112
+ her role as Belle in the film''s two direct-to-video follow-ups, Beauty and the
113
+ Beast: The Enchanted Christmas and Belle''s Magical World.'
114
+ - M. Shadows Matthew Charles Sanders (born July 31, 1981), better known as M. Shadows,
115
+ is an American singer, songwriter, and musician. He is best known as the lead
116
+ vocalist, songwriter, and a founding member of the American heavy metal band Avenged
117
+ Sevenfold. In 2017, he was voted 3rd in the list of Top 25 Greatest Modern Frontmen
118
+ by Ultimate Guitar.[1]
119
+ - Theresa Donovan In July 2013, Jeannie returns to Salem, this time going by her
120
+ middle name, Theresa. Initially, she strikes up a connection with resident bad
121
+ boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a confrontation
122
+ with JJ and his mother Jennifer Horton (Melissa Reeves) in her office, her aunt
123
+ Kayla confirms that Theresa is in fact Jeannie and that Jen promised to hire her
124
+ as her assistant, a promise she reluctantly agrees to. Kayla reminds Theresa it
125
+ is her last chance at a fresh start.[29] Theresa also strikes up a bad first impression
126
+ with Jennifer's daughter Abigail Deveraux (Kate Mansi) when Abigail smells pot
127
+ on Theresa in her mother's office.[30] To continue to battle against Jennifer,
128
+ she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes of exacting her
129
+ perfect revenge. In a ploy, Theresa reveals her intentions to hopefully woo Dr.
130
+ Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa overdoses on marijuana
131
+ and GHB. Upon hearing of their daughter's overdose and continuing problems, Shane
132
+ and Kimberly return to town in the hopes of handling their daughter's problem,
133
+ together. After believing that Theresa has a handle on her addictions, Shane and
134
+ Kimberly leave town together. Theresa then teams up with hospital co-worker Anne
135
+ Milbauer (Meredith Scott Lynn) to conspire against Jennifer, using Daniel as a
136
+ way to hurt their relationship. In early 2014, following a Narcotics Anonymous
137
+ (NA) meeting, she begins a sexual and drugged-fused relationship with Brady Black
138
+ (Eric Martsolf). In 2015, after it is found that Kristen DiMera (Eileen Davidson)
139
+ stole Theresa's embryo and carried it to term, Brady and Melanie Jonas return
140
+ her son, Christopher, to her and Brady, and the pair rename him Tate. When Theresa
141
+ moves into the Kiriakis mansion, tensions arise between her and Victor. She eventually
142
+ expresses her interest in purchasing Basic Black and running it as her own fashion
143
+ company, with financial backing from Maggie Horton (Suzanne Rogers). In the hopes
144
+ of finding the right partner, she teams up with Kate Roberts (Lauren Koslow) and
145
+ Nicole Walker (Arianne Zucker) to achieve the goal of purchasing Basic Black,
146
+ with Kate and Nicole's business background and her own interest in fashion design.
147
+ As she and Brady share several instances of rekindling their romance, she is kicked
148
+ out of the mansion by Victor; as a result, Brady quits Titan and moves in with
149
+ Theresa and Tate, in their own penthouse.
150
+ - source_sentence: where does the last name francisco come from
151
+ sentences:
152
+ - Francisco Francisco is the Spanish and Portuguese form of the masculine given
153
+ name Franciscus (corresponding to English Francis).
154
+ - 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah),
155
+ is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the
156
+ Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls
157
+ (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia,
158
+ born as Hadassah but known as Esther, who becomes queen of Persia and thwarts
159
+ a genocide of her people. The story forms the core of the Jewish festival of Purim,
160
+ during which it is read aloud twice: once in the evening and again the following
161
+ morning. The books of Esther and Song of Songs are the only books in the Hebrew
162
+ Bible that do not explicitly mention God.[2]'
163
+ - Times Square Times Square is a major commercial intersection, tourist destination,
164
+ entertainment center and neighborhood in the Midtown Manhattan section of New
165
+ York City at the junction of Broadway and Seventh Avenue. It stretches from West
166
+ 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements,
167
+ Times Square is sometimes referred to as "The Crossroads of the World",[2] "The
168
+ Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the
169
+ "heart of the world".[7] One of the world's busiest pedestrian areas,[8] it is
170
+ also the hub of the Broadway Theater District[9] and a major center of the world's
171
+ entertainment industry.[10] Times Square is one of the world's most visited tourist
172
+ attractions, drawing an estimated 50 million visitors annually.[11] Approximately
173
+ 330,000 people pass through Times Square daily,[12] many of them tourists,[13]
174
+ while over 460,000 pedestrians walk through Times Square on its busiest days.[7]
175
+ datasets:
176
+ - sentence-transformers/natural-questions
177
+ pipeline_tag: sentence-similarity
178
+ library_name: sentence-transformers
179
+ metrics:
180
+ - cosine_accuracy@1
181
+ - cosine_accuracy@3
182
+ - cosine_accuracy@5
183
+ - cosine_accuracy@10
184
+ - cosine_precision@1
185
+ - cosine_precision@3
186
+ - cosine_precision@5
187
+ - cosine_precision@10
188
+ - cosine_recall@1
189
+ - cosine_recall@3
190
+ - cosine_recall@5
191
+ - cosine_recall@10
192
+ - cosine_ndcg@10
193
+ - cosine_mrr@10
194
+ - cosine_map@100
195
+ co2_eq_emissions:
196
+ emissions: 156.71745272849893
197
+ energy_consumed: 0.4031814930936783
198
+ source: codecarbon
199
+ training_type: fine-tuning
200
+ on_cloud: false
201
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
202
+ ram_total_size: 31.777088165283203
203
+ hours_used: 1.06
204
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
205
+ model-index:
206
+ - name: MPNet base trained on Natural Questions pairs
207
+ results:
208
+ - task:
209
+ type: information-retrieval
210
+ name: Information Retrieval
211
+ dataset:
212
+ name: NanoClimateFEVER
213
+ type: NanoClimateFEVER
214
+ metrics:
215
+ - type: cosine_accuracy@1
216
+ value: 0.26
217
+ name: Cosine Accuracy@1
218
+ - type: cosine_accuracy@3
219
+ value: 0.44
220
+ name: Cosine Accuracy@3
221
+ - type: cosine_accuracy@5
222
+ value: 0.58
223
+ name: Cosine Accuracy@5
224
+ - type: cosine_accuracy@10
225
+ value: 0.74
226
+ name: Cosine Accuracy@10
227
+ - type: cosine_precision@1
228
+ value: 0.26
229
+ name: Cosine Precision@1
230
+ - type: cosine_precision@3
231
+ value: 0.16666666666666663
232
+ name: Cosine Precision@3
233
+ - type: cosine_precision@5
234
+ value: 0.132
235
+ name: Cosine Precision@5
236
+ - type: cosine_precision@10
237
+ value: 0.098
238
+ name: Cosine Precision@10
239
+ - type: cosine_recall@1
240
+ value: 0.12166666666666666
241
+ name: Cosine Recall@1
242
+ - type: cosine_recall@3
243
+ value: 0.21333333333333335
244
+ name: Cosine Recall@3
245
+ - type: cosine_recall@5
246
+ value: 0.2823333333333333
247
+ name: Cosine Recall@5
248
+ - type: cosine_recall@10
249
+ value: 0.4023333333333333
250
+ name: Cosine Recall@10
251
+ - type: cosine_ndcg@10
252
+ value: 0.3072612507335402
253
+ name: Cosine Ndcg@10
254
+ - type: cosine_mrr@10
255
+ value: 0.3923333333333332
256
+ name: Cosine Mrr@10
257
+ - type: cosine_map@100
258
+ value: 0.23491428459601352
259
+ name: Cosine Map@100
260
+ - task:
261
+ type: information-retrieval
262
+ name: Information Retrieval
263
+ dataset:
264
+ name: NanoDBPedia
265
+ type: NanoDBPedia
266
+ metrics:
267
+ - type: cosine_accuracy@1
268
+ value: 0.54
269
+ name: Cosine Accuracy@1
270
+ - type: cosine_accuracy@3
271
+ value: 0.82
272
+ name: Cosine Accuracy@3
273
+ - type: cosine_accuracy@5
274
+ value: 0.88
275
+ name: Cosine Accuracy@5
276
+ - type: cosine_accuracy@10
277
+ value: 0.92
278
+ name: Cosine Accuracy@10
279
+ - type: cosine_precision@1
280
+ value: 0.54
281
+ name: Cosine Precision@1
282
+ - type: cosine_precision@3
283
+ value: 0.49333333333333335
284
+ name: Cosine Precision@3
285
+ - type: cosine_precision@5
286
+ value: 0.452
287
+ name: Cosine Precision@5
288
+ - type: cosine_precision@10
289
+ value: 0.3999999999999999
290
+ name: Cosine Precision@10
291
+ - type: cosine_recall@1
292
+ value: 0.03532870005653879
293
+ name: Cosine Recall@1
294
+ - type: cosine_recall@3
295
+ value: 0.12890082733478095
296
+ name: Cosine Recall@3
297
+ - type: cosine_recall@5
298
+ value: 0.171758495529932
299
+ name: Cosine Recall@5
300
+ - type: cosine_recall@10
301
+ value: 0.27990780793487774
302
+ name: Cosine Recall@10
303
+ - type: cosine_ndcg@10
304
+ value: 0.4786923942173648
305
+ name: Cosine Ndcg@10
306
+ - type: cosine_mrr@10
307
+ value: 0.6884999999999999
308
+ name: Cosine Mrr@10
309
+ - type: cosine_map@100
310
+ value: 0.33505815936311906
311
+ name: Cosine Map@100
312
+ - task:
313
+ type: information-retrieval
314
+ name: Information Retrieval
315
+ dataset:
316
+ name: NanoFEVER
317
+ type: NanoFEVER
318
+ metrics:
319
+ - type: cosine_accuracy@1
320
+ value: 0.52
321
+ name: Cosine Accuracy@1
322
+ - type: cosine_accuracy@3
323
+ value: 0.7
324
+ name: Cosine Accuracy@3
325
+ - type: cosine_accuracy@5
326
+ value: 0.78
327
+ name: Cosine Accuracy@5
328
+ - type: cosine_accuracy@10
329
+ value: 0.88
330
+ name: Cosine Accuracy@10
331
+ - type: cosine_precision@1
332
+ value: 0.52
333
+ name: Cosine Precision@1
334
+ - type: cosine_precision@3
335
+ value: 0.24
336
+ name: Cosine Precision@3
337
+ - type: cosine_precision@5
338
+ value: 0.16
339
+ name: Cosine Precision@5
340
+ - type: cosine_precision@10
341
+ value: 0.092
342
+ name: Cosine Precision@10
343
+ - type: cosine_recall@1
344
+ value: 0.51
345
+ name: Cosine Recall@1
346
+ - type: cosine_recall@3
347
+ value: 0.68
348
+ name: Cosine Recall@3
349
+ - type: cosine_recall@5
350
+ value: 0.75
351
+ name: Cosine Recall@5
352
+ - type: cosine_recall@10
353
+ value: 0.85
354
+ name: Cosine Recall@10
355
+ - type: cosine_ndcg@10
356
+ value: 0.6729158648959721
357
+ name: Cosine Ndcg@10
358
+ - type: cosine_mrr@10
359
+ value: 0.6254444444444444
360
+ name: Cosine Mrr@10
361
+ - type: cosine_map@100
362
+ value: 0.614761203653674
363
+ name: Cosine Map@100
364
+ - task:
365
+ type: information-retrieval
366
+ name: Information Retrieval
367
+ dataset:
368
+ name: NanoFiQA2018
369
+ type: NanoFiQA2018
370
+ metrics:
371
+ - type: cosine_accuracy@1
372
+ value: 0.3
373
+ name: Cosine Accuracy@1
374
+ - type: cosine_accuracy@3
375
+ value: 0.44
376
+ name: Cosine Accuracy@3
377
+ - type: cosine_accuracy@5
378
+ value: 0.58
379
+ name: Cosine Accuracy@5
380
+ - type: cosine_accuracy@10
381
+ value: 0.64
382
+ name: Cosine Accuracy@10
383
+ - type: cosine_precision@1
384
+ value: 0.3
385
+ name: Cosine Precision@1
386
+ - type: cosine_precision@3
387
+ value: 0.18666666666666665
388
+ name: Cosine Precision@3
389
+ - type: cosine_precision@5
390
+ value: 0.16
391
+ name: Cosine Precision@5
392
+ - type: cosine_precision@10
393
+ value: 0.09399999999999999
394
+ name: Cosine Precision@10
395
+ - type: cosine_recall@1
396
+ value: 0.15083333333333335
397
+ name: Cosine Recall@1
398
+ - type: cosine_recall@3
399
+ value: 0.25576984126984126
400
+ name: Cosine Recall@3
401
+ - type: cosine_recall@5
402
+ value: 0.36776984126984125
403
+ name: Cosine Recall@5
404
+ - type: cosine_recall@10
405
+ value: 0.4388253968253968
406
+ name: Cosine Recall@10
407
+ - type: cosine_ndcg@10
408
+ value: 0.3428344529352367
409
+ name: Cosine Ndcg@10
410
+ - type: cosine_mrr@10
411
+ value: 0.4101904761904761
412
+ name: Cosine Mrr@10
413
+ - type: cosine_map@100
414
+ value: 0.2860017356440821
415
+ name: Cosine Map@100
416
+ - task:
417
+ type: information-retrieval
418
+ name: Information Retrieval
419
+ dataset:
420
+ name: NanoHotpotQA
421
+ type: NanoHotpotQA
422
+ metrics:
423
+ - type: cosine_accuracy@1
424
+ value: 0.56
425
+ name: Cosine Accuracy@1
426
+ - type: cosine_accuracy@3
427
+ value: 0.66
428
+ name: Cosine Accuracy@3
429
+ - type: cosine_accuracy@5
430
+ value: 0.68
431
+ name: Cosine Accuracy@5
432
+ - type: cosine_accuracy@10
433
+ value: 0.72
434
+ name: Cosine Accuracy@10
435
+ - type: cosine_precision@1
436
+ value: 0.56
437
+ name: Cosine Precision@1
438
+ - type: cosine_precision@3
439
+ value: 0.2866666666666667
440
+ name: Cosine Precision@3
441
+ - type: cosine_precision@5
442
+ value: 0.192
443
+ name: Cosine Precision@5
444
+ - type: cosine_precision@10
445
+ value: 0.102
446
+ name: Cosine Precision@10
447
+ - type: cosine_recall@1
448
+ value: 0.28
449
+ name: Cosine Recall@1
450
+ - type: cosine_recall@3
451
+ value: 0.43
452
+ name: Cosine Recall@3
453
+ - type: cosine_recall@5
454
+ value: 0.48
455
+ name: Cosine Recall@5
456
+ - type: cosine_recall@10
457
+ value: 0.51
458
+ name: Cosine Recall@10
459
+ - type: cosine_ndcg@10
460
+ value: 0.488503807443355
461
+ name: Cosine Ndcg@10
462
+ - type: cosine_mrr@10
463
+ value: 0.6108333333333333
464
+ name: Cosine Mrr@10
465
+ - type: cosine_map@100
466
+ value: 0.43846940314913296
467
+ name: Cosine Map@100
468
+ - task:
469
+ type: information-retrieval
470
+ name: Information Retrieval
471
+ dataset:
472
+ name: NanoMSMARCO
473
+ type: NanoMSMARCO
474
+ metrics:
475
+ - type: cosine_accuracy@1
476
+ value: 0.32
477
+ name: Cosine Accuracy@1
478
+ - type: cosine_accuracy@3
479
+ value: 0.56
480
+ name: Cosine Accuracy@3
481
+ - type: cosine_accuracy@5
482
+ value: 0.68
483
+ name: Cosine Accuracy@5
484
+ - type: cosine_accuracy@10
485
+ value: 0.74
486
+ name: Cosine Accuracy@10
487
+ - type: cosine_precision@1
488
+ value: 0.32
489
+ name: Cosine Precision@1
490
+ - type: cosine_precision@3
491
+ value: 0.18666666666666668
492
+ name: Cosine Precision@3
493
+ - type: cosine_precision@5
494
+ value: 0.136
495
+ name: Cosine Precision@5
496
+ - type: cosine_precision@10
497
+ value: 0.07400000000000001
498
+ name: Cosine Precision@10
499
+ - type: cosine_recall@1
500
+ value: 0.32
501
+ name: Cosine Recall@1
502
+ - type: cosine_recall@3
503
+ value: 0.56
504
+ name: Cosine Recall@3
505
+ - type: cosine_recall@5
506
+ value: 0.68
507
+ name: Cosine Recall@5
508
+ - type: cosine_recall@10
509
+ value: 0.74
510
+ name: Cosine Recall@10
511
+ - type: cosine_ndcg@10
512
+ value: 0.529224155417674
513
+ name: Cosine Ndcg@10
514
+ - type: cosine_mrr@10
515
+ value: 0.4613571428571428
516
+ name: Cosine Mrr@10
517
+ - type: cosine_map@100
518
+ value: 0.47267860121474675
519
+ name: Cosine Map@100
520
+ - task:
521
+ type: information-retrieval
522
+ name: Information Retrieval
523
+ dataset:
524
+ name: NanoNFCorpus
525
+ type: NanoNFCorpus
526
+ metrics:
527
+ - type: cosine_accuracy@1
528
+ value: 0.3
529
+ name: Cosine Accuracy@1
530
+ - type: cosine_accuracy@3
531
+ value: 0.44
532
+ name: Cosine Accuracy@3
533
+ - type: cosine_accuracy@5
534
+ value: 0.46
535
+ name: Cosine Accuracy@5
536
+ - type: cosine_accuracy@10
537
+ value: 0.56
538
+ name: Cosine Accuracy@10
539
+ - type: cosine_precision@1
540
+ value: 0.3
541
+ name: Cosine Precision@1
542
+ - type: cosine_precision@3
543
+ value: 0.28
544
+ name: Cosine Precision@3
545
+ - type: cosine_precision@5
546
+ value: 0.256
547
+ name: Cosine Precision@5
548
+ - type: cosine_precision@10
549
+ value: 0.206
550
+ name: Cosine Precision@10
551
+ - type: cosine_recall@1
552
+ value: 0.011477084598176458
553
+ name: Cosine Recall@1
554
+ - type: cosine_recall@3
555
+ value: 0.028676292172329844
556
+ name: Cosine Recall@3
557
+ - type: cosine_recall@5
558
+ value: 0.040358577465214304
559
+ name: Cosine Recall@5
560
+ - type: cosine_recall@10
561
+ value: 0.05875427093456358
562
+ name: Cosine Recall@10
563
+ - type: cosine_ndcg@10
564
+ value: 0.22959434028697892
565
+ name: Cosine Ndcg@10
566
+ - type: cosine_mrr@10
567
+ value: 0.3806031746031746
568
+ name: Cosine Mrr@10
569
+ - type: cosine_map@100
570
+ value: 0.07498220009340267
571
+ name: Cosine Map@100
572
+ - task:
573
+ type: information-retrieval
574
+ name: Information Retrieval
575
+ dataset:
576
+ name: NanoNQ
577
+ type: NanoNQ
578
+ metrics:
579
+ - type: cosine_accuracy@1
580
+ value: 0.4
581
+ name: Cosine Accuracy@1
582
+ - type: cosine_accuracy@3
583
+ value: 0.56
584
+ name: Cosine Accuracy@3
585
+ - type: cosine_accuracy@5
586
+ value: 0.68
587
+ name: Cosine Accuracy@5
588
+ - type: cosine_accuracy@10
589
+ value: 0.78
590
+ name: Cosine Accuracy@10
591
+ - type: cosine_precision@1
592
+ value: 0.4
593
+ name: Cosine Precision@1
594
+ - type: cosine_precision@3
595
+ value: 0.2
596
+ name: Cosine Precision@3
597
+ - type: cosine_precision@5
598
+ value: 0.14400000000000002
599
+ name: Cosine Precision@5
600
+ - type: cosine_precision@10
601
+ value: 0.08199999999999999
602
+ name: Cosine Precision@10
603
+ - type: cosine_recall@1
604
+ value: 0.38
605
+ name: Cosine Recall@1
606
+ - type: cosine_recall@3
607
+ value: 0.55
608
+ name: Cosine Recall@3
609
+ - type: cosine_recall@5
610
+ value: 0.65
611
+ name: Cosine Recall@5
612
+ - type: cosine_recall@10
613
+ value: 0.74
614
+ name: Cosine Recall@10
615
+ - type: cosine_ndcg@10
616
+ value: 0.559757518165897
617
+ name: Cosine Ndcg@10
618
+ - type: cosine_mrr@10
619
+ value: 0.5117460317460317
620
+ name: Cosine Mrr@10
621
+ - type: cosine_map@100
622
+ value: 0.5051110779754859
623
+ name: Cosine Map@100
624
+ - task:
625
+ type: information-retrieval
626
+ name: Information Retrieval
627
+ dataset:
628
+ name: NanoQuoraRetrieval
629
+ type: NanoQuoraRetrieval
630
+ metrics:
631
+ - type: cosine_accuracy@1
632
+ value: 0.84
633
+ name: Cosine Accuracy@1
634
+ - type: cosine_accuracy@3
635
+ value: 0.92
636
+ name: Cosine Accuracy@3
637
+ - type: cosine_accuracy@5
638
+ value: 0.94
639
+ name: Cosine Accuracy@5
640
+ - type: cosine_accuracy@10
641
+ value: 0.98
642
+ name: Cosine Accuracy@10
643
+ - type: cosine_precision@1
644
+ value: 0.84
645
+ name: Cosine Precision@1
646
+ - type: cosine_precision@3
647
+ value: 0.37999999999999995
648
+ name: Cosine Precision@3
649
+ - type: cosine_precision@5
650
+ value: 0.23999999999999996
651
+ name: Cosine Precision@5
652
+ - type: cosine_precision@10
653
+ value: 0.13199999999999998
654
+ name: Cosine Precision@10
655
+ - type: cosine_recall@1
656
+ value: 0.7406666666666666
657
+ name: Cosine Recall@1
658
+ - type: cosine_recall@3
659
+ value: 0.8786666666666667
660
+ name: Cosine Recall@3
661
+ - type: cosine_recall@5
662
+ value: 0.9093333333333333
663
+ name: Cosine Recall@5
664
+ - type: cosine_recall@10
665
+ value: 0.97
666
+ name: Cosine Recall@10
667
+ - type: cosine_ndcg@10
668
+ value: 0.9011957626416093
669
+ name: Cosine Ndcg@10
670
+ - type: cosine_mrr@10
671
+ value: 0.8868571428571428
672
+ name: Cosine Mrr@10
673
+ - type: cosine_map@100
674
+ value: 0.8761171188288835
675
+ name: Cosine Map@100
676
+ - task:
677
+ type: information-retrieval
678
+ name: Information Retrieval
679
+ dataset:
680
+ name: NanoSCIDOCS
681
+ type: NanoSCIDOCS
682
+ metrics:
683
+ - type: cosine_accuracy@1
684
+ value: 0.4
685
+ name: Cosine Accuracy@1
686
+ - type: cosine_accuracy@3
687
+ value: 0.54
688
+ name: Cosine Accuracy@3
689
+ - type: cosine_accuracy@5
690
+ value: 0.64
691
+ name: Cosine Accuracy@5
692
+ - type: cosine_accuracy@10
693
+ value: 0.76
694
+ name: Cosine Accuracy@10
695
+ - type: cosine_precision@1
696
+ value: 0.4
697
+ name: Cosine Precision@1
698
+ - type: cosine_precision@3
699
+ value: 0.28
700
+ name: Cosine Precision@3
701
+ - type: cosine_precision@5
702
+ value: 0.24000000000000005
703
+ name: Cosine Precision@5
704
+ - type: cosine_precision@10
705
+ value: 0.17600000000000002
706
+ name: Cosine Precision@10
707
+ - type: cosine_recall@1
708
+ value: 0.08366666666666667
709
+ name: Cosine Recall@1
710
+ - type: cosine_recall@3
711
+ value: 0.17366666666666664
712
+ name: Cosine Recall@3
713
+ - type: cosine_recall@5
714
+ value: 0.2476666666666667
715
+ name: Cosine Recall@5
716
+ - type: cosine_recall@10
717
+ value: 0.3636666666666667
718
+ name: Cosine Recall@10
719
+ - type: cosine_ndcg@10
720
+ value: 0.3399485562655788
721
+ name: Cosine Ndcg@10
722
+ - type: cosine_mrr@10
723
+ value: 0.5016269841269841
724
+ name: Cosine Mrr@10
725
+ - type: cosine_map@100
726
+ value: 0.2597766712058288
727
+ name: Cosine Map@100
728
+ - task:
729
+ type: information-retrieval
730
+ name: Information Retrieval
731
+ dataset:
732
+ name: NanoArguAna
733
+ type: NanoArguAna
734
+ metrics:
735
+ - type: cosine_accuracy@1
736
+ value: 0.22
737
+ name: Cosine Accuracy@1
738
+ - type: cosine_accuracy@3
739
+ value: 0.62
740
+ name: Cosine Accuracy@3
741
+ - type: cosine_accuracy@5
742
+ value: 0.86
743
+ name: Cosine Accuracy@5
744
+ - type: cosine_accuracy@10
745
+ value: 0.94
746
+ name: Cosine Accuracy@10
747
+ - type: cosine_precision@1
748
+ value: 0.22
749
+ name: Cosine Precision@1
750
+ - type: cosine_precision@3
751
+ value: 0.20666666666666667
752
+ name: Cosine Precision@3
753
+ - type: cosine_precision@5
754
+ value: 0.172
755
+ name: Cosine Precision@5
756
+ - type: cosine_precision@10
757
+ value: 0.09399999999999999
758
+ name: Cosine Precision@10
759
+ - type: cosine_recall@1
760
+ value: 0.22
761
+ name: Cosine Recall@1
762
+ - type: cosine_recall@3
763
+ value: 0.62
764
+ name: Cosine Recall@3
765
+ - type: cosine_recall@5
766
+ value: 0.86
767
+ name: Cosine Recall@5
768
+ - type: cosine_recall@10
769
+ value: 0.94
770
+ name: Cosine Recall@10
771
+ - type: cosine_ndcg@10
772
+ value: 0.5736165548748362
773
+ name: Cosine Ndcg@10
774
+ - type: cosine_mrr@10
775
+ value: 0.45563492063492056
776
+ name: Cosine Mrr@10
777
+ - type: cosine_map@100
778
+ value: 0.45858965011596586
779
+ name: Cosine Map@100
780
+ - task:
781
+ type: information-retrieval
782
+ name: Information Retrieval
783
+ dataset:
784
+ name: NanoSciFact
785
+ type: NanoSciFact
786
+ metrics:
787
+ - type: cosine_accuracy@1
788
+ value: 0.44
789
+ name: Cosine Accuracy@1
790
+ - type: cosine_accuracy@3
791
+ value: 0.66
792
+ name: Cosine Accuracy@3
793
+ - type: cosine_accuracy@5
794
+ value: 0.68
795
+ name: Cosine Accuracy@5
796
+ - type: cosine_accuracy@10
797
+ value: 0.74
798
+ name: Cosine Accuracy@10
799
+ - type: cosine_precision@1
800
+ value: 0.44
801
+ name: Cosine Precision@1
802
+ - type: cosine_precision@3
803
+ value: 0.2333333333333333
804
+ name: Cosine Precision@3
805
+ - type: cosine_precision@5
806
+ value: 0.14400000000000002
807
+ name: Cosine Precision@5
808
+ - type: cosine_precision@10
809
+ value: 0.084
810
+ name: Cosine Precision@10
811
+ - type: cosine_recall@1
812
+ value: 0.405
813
+ name: Cosine Recall@1
814
+ - type: cosine_recall@3
815
+ value: 0.63
816
+ name: Cosine Recall@3
817
+ - type: cosine_recall@5
818
+ value: 0.65
819
+ name: Cosine Recall@5
820
+ - type: cosine_recall@10
821
+ value: 0.73
822
+ name: Cosine Recall@10
823
+ - type: cosine_ndcg@10
824
+ value: 0.5809087660276336
825
+ name: Cosine Ndcg@10
826
+ - type: cosine_mrr@10
827
+ value: 0.5428571428571428
828
+ name: Cosine Mrr@10
829
+ - type: cosine_map@100
830
+ value: 0.5343620568329766
831
+ name: Cosine Map@100
832
+ - task:
833
+ type: information-retrieval
834
+ name: Information Retrieval
835
+ dataset:
836
+ name: NanoTouche2020
837
+ type: NanoTouche2020
838
+ metrics:
839
+ - type: cosine_accuracy@1
840
+ value: 0.5714285714285714
841
+ name: Cosine Accuracy@1
842
+ - type: cosine_accuracy@3
843
+ value: 0.8571428571428571
844
+ name: Cosine Accuracy@3
845
+ - type: cosine_accuracy@5
846
+ value: 0.9183673469387755
847
+ name: Cosine Accuracy@5
848
+ - type: cosine_accuracy@10
849
+ value: 0.9795918367346939
850
+ name: Cosine Accuracy@10
851
+ - type: cosine_precision@1
852
+ value: 0.5714285714285714
853
+ name: Cosine Precision@1
854
+ - type: cosine_precision@3
855
+ value: 0.5306122448979591
856
+ name: Cosine Precision@3
857
+ - type: cosine_precision@5
858
+ value: 0.5183673469387755
859
+ name: Cosine Precision@5
860
+ - type: cosine_precision@10
861
+ value: 0.4163265306122449
862
+ name: Cosine Precision@10
863
+ - type: cosine_recall@1
864
+ value: 0.04042531470555883
865
+ name: Cosine Recall@1
866
+ - type: cosine_recall@3
867
+ value: 0.11796663614343775
868
+ name: Cosine Recall@3
869
+ - type: cosine_recall@5
870
+ value: 0.18934738259789605
871
+ name: Cosine Recall@5
872
+ - type: cosine_recall@10
873
+ value: 0.28088647761316804
874
+ name: Cosine Recall@10
875
+ - type: cosine_ndcg@10
876
+ value: 0.4716177209745631
877
+ name: Cosine Ndcg@10
878
+ - type: cosine_mrr@10
879
+ value: 0.7203109815354714
880
+ name: Cosine Mrr@10
881
+ - type: cosine_map@100
882
+ value: 0.36609464219543497
883
+ name: Cosine Map@100
884
+ - task:
885
+ type: nano-beir
886
+ name: Nano BEIR
887
+ dataset:
888
+ name: NanoBEIR mean
889
+ type: NanoBEIR_mean
890
+ metrics:
891
+ - type: cosine_accuracy@1
892
+ value: 0.43626373626373627
893
+ name: Cosine Accuracy@1
894
+ - type: cosine_accuracy@3
895
+ value: 0.632087912087912
896
+ name: Cosine Accuracy@3
897
+ - type: cosine_accuracy@5
898
+ value: 0.7198744113029828
899
+ name: Cosine Accuracy@5
900
+ - type: cosine_accuracy@10
901
+ value: 0.7984301412872841
902
+ name: Cosine Accuracy@10
903
+ - type: cosine_precision@1
904
+ value: 0.43626373626373627
905
+ name: Cosine Precision@1
906
+ - type: cosine_precision@3
907
+ value: 0.28235478806907377
908
+ name: Cosine Precision@3
909
+ - type: cosine_precision@5
910
+ value: 0.22664364207221352
911
+ name: Cosine Precision@5
912
+ - type: cosine_precision@10
913
+ value: 0.15771742543171113
914
+ name: Cosine Precision@10
915
+ - type: cosine_recall@1
916
+ value: 0.25377418713027755
917
+ name: Cosine Recall@1
918
+ - type: cosine_recall@3
919
+ value: 0.4051523279682351
920
+ name: Cosine Recall@3
921
+ - type: cosine_recall@5
922
+ value: 0.48296674078432444
923
+ name: Cosine Recall@5
924
+ - type: cosine_recall@10
925
+ value: 0.5618749194852313
926
+ name: Cosine Recall@10
927
+ - type: cosine_ndcg@10
928
+ value: 0.4981593188369415
929
+ name: Cosine Ndcg@10
930
+ - type: cosine_mrr@10
931
+ value: 0.5529457775784306
932
+ name: Cosine Mrr@10
933
+ - type: cosine_map@100
934
+ value: 0.41976283114374974
935
+ name: Cosine Map@100
936
+ ---
937
+
938
+ # MPNet base trained on Natural Questions pairs
939
+
940
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
941
+
942
+ ## Model Details
943
+
944
+ ### Model Description
945
+ - **Model Type:** Sentence Transformer
946
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
947
+ - **Maximum Sequence Length:** 512 tokens
948
+ - **Output Dimensionality:** 768 dimensions
949
+ - **Similarity Function:** Cosine Similarity
950
+ - **Training Dataset:**
951
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
952
+ - **Language:** en
953
+ - **License:** apache-2.0
954
+
955
+ ### Model Sources
956
+
957
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
958
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
959
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
960
+
961
+ ### Full Model Architecture
962
+
963
+ ```
964
+ SentenceTransformer(
965
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
966
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
967
+ )
968
+ ```
969
+
970
+ ## Usage
971
+
972
+ ### Direct Usage (Sentence Transformers)
973
+
974
+ First install the Sentence Transformers library:
975
+
976
+ ```bash
977
+ pip install -U sentence-transformers
978
+ ```
979
+
980
+ Then you can load this model and run inference.
981
+ ```python
982
+ from sentence_transformers import SentenceTransformer
983
+
984
+ # Download from the 🤗 Hub
985
+ model = SentenceTransformer("tomaarsen/mpnet-base-nq")
986
+ # Run inference
987
+ sentences = [
988
+ 'where does the last name francisco come from',
989
+ 'Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).',
990
+ 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]',
991
+ ]
992
+ embeddings = model.encode(sentences)
993
+ print(embeddings.shape)
994
+ # [3, 768]
995
+
996
+ # Get the similarity scores for the embeddings
997
+ similarities = model.similarity(embeddings, embeddings)
998
+ print(similarities.shape)
999
+ # [3, 3]
1000
+ ```
1001
+
1002
+ <!--
1003
+ ### Direct Usage (Transformers)
1004
+
1005
+ <details><summary>Click to see the direct usage in Transformers</summary>
1006
+
1007
+ </details>
1008
+ -->
1009
+
1010
+ <!--
1011
+ ### Downstream Usage (Sentence Transformers)
1012
+
1013
+ You can finetune this model on your own dataset.
1014
+
1015
+ <details><summary>Click to expand</summary>
1016
+
1017
+ </details>
1018
+ -->
1019
+
1020
+ <!--
1021
+ ### Out-of-Scope Use
1022
+
1023
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1024
+ -->
1025
+
1026
+ ## Evaluation
1027
+
1028
+ ### Metrics
1029
+
1030
+ #### Information Retrieval
1031
+
1032
+ * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1033
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1034
+
1035
+ | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1036
+ |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
1037
+ | cosine_accuracy@1 | 0.26 | 0.54 | 0.52 | 0.3 | 0.56 | 0.32 | 0.3 | 0.4 | 0.84 | 0.4 | 0.22 | 0.44 | 0.5714 |
1038
+ | cosine_accuracy@3 | 0.44 | 0.82 | 0.7 | 0.44 | 0.66 | 0.56 | 0.44 | 0.56 | 0.92 | 0.54 | 0.62 | 0.66 | 0.8571 |
1039
+ | cosine_accuracy@5 | 0.58 | 0.88 | 0.78 | 0.58 | 0.68 | 0.68 | 0.46 | 0.68 | 0.94 | 0.64 | 0.86 | 0.68 | 0.9184 |
1040
+ | cosine_accuracy@10 | 0.74 | 0.92 | 0.88 | 0.64 | 0.72 | 0.74 | 0.56 | 0.78 | 0.98 | 0.76 | 0.94 | 0.74 | 0.9796 |
1041
+ | cosine_precision@1 | 0.26 | 0.54 | 0.52 | 0.3 | 0.56 | 0.32 | 0.3 | 0.4 | 0.84 | 0.4 | 0.22 | 0.44 | 0.5714 |
1042
+ | cosine_precision@3 | 0.1667 | 0.4933 | 0.24 | 0.1867 | 0.2867 | 0.1867 | 0.28 | 0.2 | 0.38 | 0.28 | 0.2067 | 0.2333 | 0.5306 |
1043
+ | cosine_precision@5 | 0.132 | 0.452 | 0.16 | 0.16 | 0.192 | 0.136 | 0.256 | 0.144 | 0.24 | 0.24 | 0.172 | 0.144 | 0.5184 |
1044
+ | cosine_precision@10 | 0.098 | 0.4 | 0.092 | 0.094 | 0.102 | 0.074 | 0.206 | 0.082 | 0.132 | 0.176 | 0.094 | 0.084 | 0.4163 |
1045
+ | cosine_recall@1 | 0.1217 | 0.0353 | 0.51 | 0.1508 | 0.28 | 0.32 | 0.0115 | 0.38 | 0.7407 | 0.0837 | 0.22 | 0.405 | 0.0404 |
1046
+ | cosine_recall@3 | 0.2133 | 0.1289 | 0.68 | 0.2558 | 0.43 | 0.56 | 0.0287 | 0.55 | 0.8787 | 0.1737 | 0.62 | 0.63 | 0.118 |
1047
+ | cosine_recall@5 | 0.2823 | 0.1718 | 0.75 | 0.3678 | 0.48 | 0.68 | 0.0404 | 0.65 | 0.9093 | 0.2477 | 0.86 | 0.65 | 0.1893 |
1048
+ | cosine_recall@10 | 0.4023 | 0.2799 | 0.85 | 0.4388 | 0.51 | 0.74 | 0.0588 | 0.74 | 0.97 | 0.3637 | 0.94 | 0.73 | 0.2809 |
1049
+ | **cosine_ndcg@10** | **0.3073** | **0.4787** | **0.6729** | **0.3428** | **0.4885** | **0.5292** | **0.2296** | **0.5598** | **0.9012** | **0.3399** | **0.5736** | **0.5809** | **0.4716** |
1050
+ | cosine_mrr@10 | 0.3923 | 0.6885 | 0.6254 | 0.4102 | 0.6108 | 0.4614 | 0.3806 | 0.5117 | 0.8869 | 0.5016 | 0.4556 | 0.5429 | 0.7203 |
1051
+ | cosine_map@100 | 0.2349 | 0.3351 | 0.6148 | 0.286 | 0.4385 | 0.4727 | 0.075 | 0.5051 | 0.8761 | 0.2598 | 0.4586 | 0.5344 | 0.3661 |
1052
+
1053
+ #### Nano BEIR
1054
+
1055
+ * Dataset: `NanoBEIR_mean`
1056
+ * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
1057
+
1058
+ | Metric | Value |
1059
+ |:--------------------|:-----------|
1060
+ | cosine_accuracy@1 | 0.4363 |
1061
+ | cosine_accuracy@3 | 0.6321 |
1062
+ | cosine_accuracy@5 | 0.7199 |
1063
+ | cosine_accuracy@10 | 0.7984 |
1064
+ | cosine_precision@1 | 0.4363 |
1065
+ | cosine_precision@3 | 0.2824 |
1066
+ | cosine_precision@5 | 0.2266 |
1067
+ | cosine_precision@10 | 0.1577 |
1068
+ | cosine_recall@1 | 0.2538 |
1069
+ | cosine_recall@3 | 0.4052 |
1070
+ | cosine_recall@5 | 0.483 |
1071
+ | cosine_recall@10 | 0.5619 |
1072
+ | **cosine_ndcg@10** | **0.4982** |
1073
+ | cosine_mrr@10 | 0.5529 |
1074
+ | cosine_map@100 | 0.4198 |
1075
+
1076
+ <!--
1077
+ ## Bias, Risks and Limitations
1078
+
1079
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1080
+ -->
1081
+
1082
+ <!--
1083
+ ### Recommendations
1084
+
1085
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1086
+ -->
1087
+
1088
+ ## Training Details
1089
+
1090
+ ### Training Dataset
1091
+
1092
+ #### natural-questions
1093
+
1094
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1095
+ * Size: 100,231 training samples
1096
+ * Columns: <code>query</code> and <code>answer</code>
1097
+ * Approximate statistics based on the first 1000 samples:
1098
+ | | query | answer |
1099
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1100
+ | type | string | string |
1101
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.74 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 137.2 tokens</li><li>max: 508 tokens</li></ul> |
1102
+ * Samples:
1103
+ | query | answer |
1104
+ |:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1105
+ | <code>who is required to report according to the hmda</code> | <code>Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code> |
1106
+ | <code>what is the definition of endoplasmic reticulum in biology</code> | <code>Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 using elect...</code> |
1107
+ | <code>what does the ski mean in polish names</code> | <code>Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code> |
1108
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
1109
+ ```json
1110
+ {
1111
+ "scale": 20.0,
1112
+ "similarity_fct": "cos_sim"
1113
+ }
1114
+ ```
1115
+
1116
+ ### Evaluation Dataset
1117
+
1118
+ #### natural-questions
1119
+
1120
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1121
+ * Size: 100,231 evaluation samples
1122
+ * Columns: <code>query</code> and <code>answer</code>
1123
+ * Approximate statistics based on the first 1000 samples:
1124
+ | | query | answer |
1125
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1126
+ | type | string | string |
1127
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 135.64 tokens</li><li>max: 512 tokens</li></ul> |
1128
+ * Samples:
1129
+ | query | answer |
1130
+ |:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1131
+ | <code>difference between russian blue and british blue cat</code> | <code>Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> |
1132
+ | <code>who played the little girl on mrs doubtfire</code> | <code>Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code> |
1133
+ | <code>what year did the movie the sound of music come out</code> | <code>The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code> |
1134
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
1135
+ ```json
1136
+ {
1137
+ "scale": 20.0,
1138
+ "similarity_fct": "cos_sim"
1139
+ }
1140
+ ```
1141
+
1142
+ ### Training Hyperparameters
1143
+ #### Non-Default Hyperparameters
1144
+
1145
+ - `eval_strategy`: steps
1146
+ - `per_device_train_batch_size`: 256
1147
+ - `per_device_eval_batch_size`: 256
1148
+ - `learning_rate`: 2e-05
1149
+ - `num_train_epochs`: 1
1150
+ - `warmup_ratio`: 0.1
1151
+ - `seed`: 12
1152
+ - `bf16`: True
1153
+ - `batch_sampler`: no_duplicates
1154
+
1155
+ #### All Hyperparameters
1156
+ <details><summary>Click to expand</summary>
1157
+
1158
+ - `overwrite_output_dir`: False
1159
+ - `do_predict`: False
1160
+ - `eval_strategy`: steps
1161
+ - `prediction_loss_only`: True
1162
+ - `per_device_train_batch_size`: 256
1163
+ - `per_device_eval_batch_size`: 256
1164
+ - `per_gpu_train_batch_size`: None
1165
+ - `per_gpu_eval_batch_size`: None
1166
+ - `gradient_accumulation_steps`: 1
1167
+ - `eval_accumulation_steps`: None
1168
+ - `torch_empty_cache_steps`: None
1169
+ - `learning_rate`: 2e-05
1170
+ - `weight_decay`: 0.0
1171
+ - `adam_beta1`: 0.9
1172
+ - `adam_beta2`: 0.999
1173
+ - `adam_epsilon`: 1e-08
1174
+ - `max_grad_norm`: 1.0
1175
+ - `num_train_epochs`: 1
1176
+ - `max_steps`: -1
1177
+ - `lr_scheduler_type`: linear
1178
+ - `lr_scheduler_kwargs`: {}
1179
+ - `warmup_ratio`: 0.1
1180
+ - `warmup_steps`: 0
1181
+ - `log_level`: passive
1182
+ - `log_level_replica`: warning
1183
+ - `log_on_each_node`: True
1184
+ - `logging_nan_inf_filter`: True
1185
+ - `save_safetensors`: True
1186
+ - `save_on_each_node`: False
1187
+ - `save_only_model`: False
1188
+ - `restore_callback_states_from_checkpoint`: False
1189
+ - `no_cuda`: False
1190
+ - `use_cpu`: False
1191
+ - `use_mps_device`: False
1192
+ - `seed`: 12
1193
+ - `data_seed`: None
1194
+ - `jit_mode_eval`: False
1195
+ - `use_ipex`: False
1196
+ - `bf16`: True
1197
+ - `fp16`: False
1198
+ - `fp16_opt_level`: O1
1199
+ - `half_precision_backend`: auto
1200
+ - `bf16_full_eval`: False
1201
+ - `fp16_full_eval`: False
1202
+ - `tf32`: None
1203
+ - `local_rank`: 0
1204
+ - `ddp_backend`: None
1205
+ - `tpu_num_cores`: None
1206
+ - `tpu_metrics_debug`: False
1207
+ - `debug`: []
1208
+ - `dataloader_drop_last`: False
1209
+ - `dataloader_num_workers`: 0
1210
+ - `dataloader_prefetch_factor`: None
1211
+ - `past_index`: -1
1212
+ - `disable_tqdm`: False
1213
+ - `remove_unused_columns`: True
1214
+ - `label_names`: None
1215
+ - `load_best_model_at_end`: False
1216
+ - `ignore_data_skip`: False
1217
+ - `fsdp`: []
1218
+ - `fsdp_min_num_params`: 0
1219
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1220
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1221
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1222
+ - `deepspeed`: None
1223
+ - `label_smoothing_factor`: 0.0
1224
+ - `optim`: adamw_torch
1225
+ - `optim_args`: None
1226
+ - `adafactor`: False
1227
+ - `group_by_length`: False
1228
+ - `length_column_name`: length
1229
+ - `ddp_find_unused_parameters`: None
1230
+ - `ddp_bucket_cap_mb`: None
1231
+ - `ddp_broadcast_buffers`: False
1232
+ - `dataloader_pin_memory`: True
1233
+ - `dataloader_persistent_workers`: False
1234
+ - `skip_memory_metrics`: True
1235
+ - `use_legacy_prediction_loop`: False
1236
+ - `push_to_hub`: False
1237
+ - `resume_from_checkpoint`: None
1238
+ - `hub_model_id`: None
1239
+ - `hub_strategy`: every_save
1240
+ - `hub_private_repo`: False
1241
+ - `hub_always_push`: False
1242
+ - `gradient_checkpointing`: False
1243
+ - `gradient_checkpointing_kwargs`: None
1244
+ - `include_inputs_for_metrics`: False
1245
+ - `eval_do_concat_batches`: True
1246
+ - `fp16_backend`: auto
1247
+ - `push_to_hub_model_id`: None
1248
+ - `push_to_hub_organization`: None
1249
+ - `mp_parameters`:
1250
+ - `auto_find_batch_size`: False
1251
+ - `full_determinism`: False
1252
+ - `torchdynamo`: None
1253
+ - `ray_scope`: last
1254
+ - `ddp_timeout`: 1800
1255
+ - `torch_compile`: False
1256
+ - `torch_compile_backend`: None
1257
+ - `torch_compile_mode`: None
1258
+ - `dispatch_batches`: None
1259
+ - `split_batches`: None
1260
+ - `include_tokens_per_second`: False
1261
+ - `include_num_input_tokens_seen`: False
1262
+ - `neftune_noise_alpha`: None
1263
+ - `optim_target_modules`: None
1264
+ - `batch_eval_metrics`: False
1265
+ - `eval_on_start`: False
1266
+ - `use_liger_kernel`: False
1267
+ - `eval_use_gather_object`: False
1268
+ - `batch_sampler`: no_duplicates
1269
+ - `multi_dataset_batch_sampler`: proportional
1270
+
1271
+ </details>
1272
+
1273
+ ### Training Logs
1274
+ | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
1275
+ |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
1276
+ | 0 | 0 | - | - | 0.0419 | 0.1123 | 0.0389 | 0.0309 | 0.0746 | 0.1310 | 0.0311 | 0.0397 | 0.6607 | 0.0638 | 0.2616 | 0.1097 | 0.1098 | 0.1312 |
1277
+ | 0.0026 | 1 | 4.9565 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1278
+ | 0.1289 | 50 | 2.0541 | 0.2601 | 0.2710 | 0.4448 | 0.6531 | 0.3607 | 0.4391 | 0.4775 | 0.2046 | 0.4423 | 0.8485 | 0.3347 | 0.5148 | 0.5010 | 0.4544 | 0.4574 |
1279
+ | 0.2577 | 100 | 0.2154 | 0.1422 | 0.2920 | 0.4577 | 0.6635 | 0.3671 | 0.4623 | 0.5067 | 0.2115 | 0.5170 | 0.8845 | 0.3360 | 0.5483 | 0.5044 | 0.4627 | 0.4780 |
1280
+ | 0.3866 | 150 | 0.1503 | 0.1182 | 0.3064 | 0.4665 | 0.6658 | 0.3511 | 0.4935 | 0.5324 | 0.2347 | 0.5320 | 0.8982 | 0.3316 | 0.5674 | 0.5495 | 0.4583 | 0.4913 |
1281
+ | 0.5155 | 200 | 0.1325 | 0.1075 | 0.3205 | 0.4777 | 0.6608 | 0.3588 | 0.4938 | 0.5221 | 0.2285 | 0.5568 | 0.9064 | 0.3321 | 0.5566 | 0.5510 | 0.4693 | 0.4950 |
1282
+ | 0.6443 | 250 | 0.142 | 0.1040 | 0.3326 | 0.4721 | 0.6589 | 0.3671 | 0.4875 | 0.5207 | 0.2392 | 0.5511 | 0.9025 | 0.3336 | 0.5637 | 0.5861 | 0.4738 | 0.4991 |
1283
+ | 0.7732 | 300 | 0.1243 | 0.0989 | 0.3078 | 0.4699 | 0.6560 | 0.3493 | 0.4946 | 0.5268 | 0.2275 | 0.5422 | 0.9071 | 0.3375 | 0.5664 | 0.5850 | 0.4709 | 0.4955 |
1284
+ | 0.9021 | 350 | 0.1161 | 0.0960 | 0.3092 | 0.4781 | 0.6734 | 0.3426 | 0.4971 | 0.5218 | 0.2294 | 0.5608 | 0.9012 | 0.3444 | 0.5742 | 0.5818 | 0.4672 | 0.4986 |
1285
+ | 1.0 | 388 | - | - | 0.3073 | 0.4787 | 0.6729 | 0.3428 | 0.4885 | 0.5292 | 0.2296 | 0.5598 | 0.9012 | 0.3399 | 0.5736 | 0.5809 | 0.4716 | 0.4982 |
1286
+
1287
+
1288
+ ### Environmental Impact
1289
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1290
+ - **Energy Consumed**: 0.403 kWh
1291
+ - **Carbon Emitted**: 0.157 kg of CO2
1292
+ - **Hours Used**: 1.06 hours
1293
+
1294
+ ### Training Hardware
1295
+ - **On Cloud**: No
1296
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1297
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1298
+ - **RAM Size**: 31.78 GB
1299
+
1300
+ ### Framework Versions
1301
+ - Python: 3.11.6
1302
+ - Sentence Transformers: 3.3.0.dev0
1303
+ - Transformers: 4.45.2
1304
+ - PyTorch: 2.5.0+cu121
1305
+ - Accelerate: 1.0.0
1306
+ - Datasets: 2.20.0
1307
+ - Tokenizers: 0.20.1-dev.0
1308
+
1309
+ ## Citation
1310
+
1311
+ ### BibTeX
1312
+
1313
+ #### Sentence Transformers
1314
+ ```bibtex
1315
+ @inproceedings{reimers-2019-sentence-bert,
1316
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1317
+ author = "Reimers, Nils and Gurevych, Iryna",
1318
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1319
+ month = "11",
1320
+ year = "2019",
1321
+ publisher = "Association for Computational Linguistics",
1322
+ url = "https://arxiv.org/abs/1908.10084",
1323
+ }
1324
+ ```
1325
+
1326
+ #### CachedMultipleNegativesRankingLoss
1327
+ ```bibtex
1328
+ @misc{gao2021scaling,
1329
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
1330
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
1331
+ year={2021},
1332
+ eprint={2101.06983},
1333
+ archivePrefix={arXiv},
1334
+ primaryClass={cs.LG}
1335
+ }
1336
+ ```
1337
+
1338
+ <!--
1339
+ ## Glossary
1340
+
1341
+ *Clearly define terms in order to be accessible across audiences.*
1342
+ -->
1343
+
1344
+ <!--
1345
+ ## Model Card Authors
1346
+
1347
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1348
+ -->
1349
+
1350
+ <!--
1351
+ ## Model Card Contact
1352
+
1353
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1354
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0.dev0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db4b753004f21b83daf0c33108cda1fe8f507e4247504c6b77e18955a113ee8
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff