import logging from datasets import load_dataset, Dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, SentenceTransformerModelCardData, ) from sentence_transformers.losses import MultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers from sentence_transformers.evaluation import InformationRetrievalEvaluator logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO ) # 1. Load a model to finetune with 2. (Optional) model card data model = SentenceTransformer( "microsoft/mpnet-base", model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name="MPNet base trained on Natural Questions pairs", ), ) model_name = "mpnet-base-natural-questions-mnrl" # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/natural-questions", split="train") dataset = dataset.add_column("id", range(len(dataset))) train_dataset: Dataset = dataset.select(range(90_000)) eval_dataset: Dataset = dataset.select(range(90_000, len(dataset))) # 4. Define a loss function loss = MultipleNegativesRankingLoss(model) # 5. (Optional) Specify training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{model_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=16, per_device_eval_batch_size=16, learning_rate=2e-5, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=200, save_strategy="steps", save_steps=200, save_total_limit=2, logging_steps=200, logging_first_step=True, run_name=model_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries queries = dict(zip(eval_dataset["id"], eval_dataset["query"])) corpus = {cid: dataset[cid]["answer"] for cid in range(10_000)} | {cid: dataset[cid]["answer"] for cid in eval_dataset["id"]} relevant_docs = {qid: {qid} for qid in eval_dataset["id"]} dev_evaluator = InformationRetrievalEvaluator( corpus=corpus, queries=queries, relevant_docs=relevant_docs, show_progress_bar=True, name="natural-questions-dev", batch_size=8, ) dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset.remove_columns("id"), eval_dataset=eval_dataset.remove_columns("id"), loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model model.save_pretrained(f"models/{model_name}/final") # 9. (Optional) Push it to the Hugging Face Hub model.push_to_hub(f"{model_name}")