toind commited on
Commit
2dc50c2
·
verified ·
1 Parent(s): 1bc42b3

Update __init__.py

Browse files
Files changed (1) hide show
  1. __init__.py +1 -34
__init__.py CHANGED
@@ -1,38 +1,5 @@
1
  from transformers import AutoConfig, AutoModel
2
- from transformers import PreTrainedModel, PretrainedConfig
3
- import torch
4
- import torch.nn as nn
5
-
6
- class CustomConfig(PretrainedConfig):
7
- model_type = "custom_model"
8
-
9
- def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, num_labels=2, **kwargs):
10
- super().__init__(**kwargs)
11
- self.vocab_size = vocab_size
12
- self.hidden_size = hidden_size
13
- self.num_hidden_layers = num_hidden_layers
14
- self.num_attention_heads = num_attention_heads
15
- self.num_labels = num_labels
16
-
17
- class CustomModel(PreTrainedModel):
18
- config_class = CustomConfig
19
-
20
- def __init__(self, config):
21
- super().__init__(config)
22
- self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
23
- self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) for _ in range(config.num_hidden_layers)])
24
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
25
-
26
- self.init_weights()
27
-
28
- def forward(self, input_ids):
29
- embeddings = self.embedding(input_ids)
30
- x = embeddings
31
- for layer in self.layers:
32
- x = layer(x)
33
- logits = self.classifier(x.mean(dim=1)) # Example: taking the mean of the output as input to the classifier
34
- return logits
35
-
36
 
37
  # Register the custom classes
38
  AutoConfig.register("custom_model", CustomConfig)
 
1
  from transformers import AutoConfig, AutoModel
2
+ from .custom_model import CustomConfig, CustomModel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  # Register the custom classes
5
  AutoConfig.register("custom_model", CustomConfig)