Update __init__.py
Browse files- __init__.py +1 -34
__init__.py
CHANGED
@@ -1,38 +1,5 @@
|
|
1 |
from transformers import AutoConfig, AutoModel
|
2 |
-
from
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
|
6 |
-
class CustomConfig(PretrainedConfig):
|
7 |
-
model_type = "custom_model"
|
8 |
-
|
9 |
-
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, num_labels=2, **kwargs):
|
10 |
-
super().__init__(**kwargs)
|
11 |
-
self.vocab_size = vocab_size
|
12 |
-
self.hidden_size = hidden_size
|
13 |
-
self.num_hidden_layers = num_hidden_layers
|
14 |
-
self.num_attention_heads = num_attention_heads
|
15 |
-
self.num_labels = num_labels
|
16 |
-
|
17 |
-
class CustomModel(PreTrainedModel):
|
18 |
-
config_class = CustomConfig
|
19 |
-
|
20 |
-
def __init__(self, config):
|
21 |
-
super().__init__(config)
|
22 |
-
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
23 |
-
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) for _ in range(config.num_hidden_layers)])
|
24 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
25 |
-
|
26 |
-
self.init_weights()
|
27 |
-
|
28 |
-
def forward(self, input_ids):
|
29 |
-
embeddings = self.embedding(input_ids)
|
30 |
-
x = embeddings
|
31 |
-
for layer in self.layers:
|
32 |
-
x = layer(x)
|
33 |
-
logits = self.classifier(x.mean(dim=1)) # Example: taking the mean of the output as input to the classifier
|
34 |
-
return logits
|
35 |
-
|
36 |
|
37 |
# Register the custom classes
|
38 |
AutoConfig.register("custom_model", CustomConfig)
|
|
|
1 |
from transformers import AutoConfig, AutoModel
|
2 |
+
from .custom_model import CustomConfig, CustomModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Register the custom classes
|
5 |
AutoConfig.register("custom_model", CustomConfig)
|