--- library_name: transformers license: apache-2.0 base_model: tmtms/whisper_checkpoints tags: - generated_from_trainer metrics: - wer model-index: - name: whisper_checkpoints7 results: [] --- # whisper_checkpoints7 This model is a fine-tuned version of [tmtms/whisper_checkpoints](https://huggingface.co/tmtms/whisper_checkpoints) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0170 - Wer: 20.9137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.009 | 2.5510 | 1000 | 0.0306 | 21.4887 | | 0.0011 | 5.1020 | 2000 | 0.0184 | 22.1210 | | 0.0005 | 7.6531 | 3000 | 0.0172 | 21.3229 | | 0.0004 | 10.2041 | 4000 | 0.0170 | 20.9137 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0