--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: pickle model_file: MLR-model.pkl widget: - structuredData: CAS: - 696-71-9 - 94-02-0 - 15128-82-2 CID: - 12766.0 - 7170.0 - 27057.0 CanonicalSMILES: - canonical: OC1CCCCCCC1 original: C1CCCC(CCC1)O - canonical: CCOC(=O)CC(=O)c1ccccc1 original: CCOC(=O)CC(=O)C1=CC=CC=C1 - canonical: O=[N+]([O-])c1ncccc1O original: C1=CC(=C(N=C1)[N+](=O)[O-])O Cor1-C420 Adduct (M+H): - no Adduct - no Adduct - no Adduct Cor1-C420 Depletion 24 h (%): - 1.0 - 1.0 - 1.0 Cor1-C420 Dimer (%): - 2.0 - 5.0 - 4.0 Cor1-C420 Kmax (1/mM/min): - 6.979399898264935e-06 - 6.979399898264935e-06 - 6.979399898264935e-06 DPRA Cysteine depletion (%): - .nan - 11.2 - .nan DPRA Lysine depletion (%): - .nan - 0.9 - .nan InChI: - InChI=1S/C8H16O/c9-8-6-4-2-1-3-5-7-8/h8-9H,1-7H2 - InChI=1S/C11H12O3/c1-2-14-11(13)8-10(12)9-6-4-3-5-7-9/h3-7H,2,8H2,1H3 - InChI=1S/C5H4N2O3/c8-4-2-1-3-6-5(4)7(9)10/h1-3,8H InChIKey: - FHADSMKORVFYOS-UHFFFAOYSA-N - GKKZMYDNDDMXSE-UHFFFAOYSA-N - QBPDSKPWYWIHGA-UHFFFAOYSA-N IsomericSMILES: - canonical: OC1CCCCCCC1 original: C1CCCC(CCC1)O - canonical: CCOC(=O)CC(=O)c1ccccc1 original: CCOC(=O)CC(=O)C1=CC=CC=C1 - canonical: O=[N+]([O-])c1ncccc1O original: C1=CC(=C(N=C1)[N+](=O)[O-])O KeratinoSens EC1.5 (uM): - 249.6822169 - 62.9764329 - 4000.0 KeratinoSens EC3 (uM): - 4000.0 - 689.0 - 4000.0 KeratinoSens IC50 (uM): - 4000.0 - 4000.0 - 4000.0 KeratinoSens Imax: - 2.830997136 - 3.299878249 - 1.036847118 KeratinoSens Log EC1.5 (uM): - 2.3973876117256947 - 1.7991780577657597 - 3.6020599913279625 KeratinoSens Log IC50 (uM): - 3.6020599913279625 - 3.6020599913279625 - 3.6020599913279625 LLNA EC3 (%): - 100.0 - 100.0 - 100.0 LLNA Log EC3 (%): - 2.0 - 2.0 - 2.0 MW: - 128.21 - 192.21 - 140.1 OPERA Boiling point (°C): - 186.863 - 276.068 - 323.069 OPERA Henry constant (atm/m3): - 7.84426e-06 - 5.86618e-07 - 9.47507e-08 OPERA Log D at pH 5.5: - 2.36 - 1.87 - -0.01 OPERA Log D at pH 7.4: - 2.36 - 1.87 - -1.69 OPERA Melting point (°C): - 25.1423 - 49.3271 - 128.292 OPERA Octanol-air partition coefficient Log Koa: - 6.08747 - 6.56126 - 6.36287 OPERA Octanol-water partition coefficient LogP: - 2.3597 - 1.86704 - 0.398541 OPERA Vapour pressure (mm Hg): - 0.0839894 - 0.000406705 - 0.00472604 OPERA Water solubility (mol/L): - 0.0510404 - 0.01476 - 0.0416421 OPERA pKaa: - 10.68 - .nan - 5.31 OPERA pKab: - .nan - .nan - .nan SMILES: - canonical: OC1CCCCCCC1 original: OC1CCCCCCC1 - canonical: CCOC(=O)CC(=O)c1ccccc1 original: CCOC(=O)CC(=O)c1ccccc1 - canonical: O=[N+]([O-])c1ncccc1O original: OC1=CC=CN=C1[N+]([O-])=O TIMES Log Vapour pressure (Pa): - 0.8564932564458658 - -0.2851674875666674 - -0.9385475209128068 Vapour pressure (Pa): - 7.1861 - 0.5186 - 0.1152 cLogP: - 2.285000000003492 - 1.206000000005588 - 0.5590000000020154 hCLAT CV75 (ug/mL): - .nan - 571.0951916 - .nan hCLAT Call: - .nan - 0.0 - .nan hCLAT EC150 (ug/mL): - .nan - .nan - .nan hCLAT EC200 (ug/mL): - .nan - .nan - .nan hCLAT MIT (ug/mL): - .nan - .nan - .nan kDPRA Call: [] kDPRA Log rate (1/s/M): - .nan - .nan - .nan --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |------------------|---------| | copy_X | True | | fit_intercept | True | | n_jobs | | | positive | False |
### Model Plot
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # model_card_authors Tomaz Mohoric # limitations This model is intended for educational purposes. # model_description This is a multiple linear regression model on a skin sensitisation dataset.