--- license: apache-2.0 library_name: timm tags: - image-classification - timm - transformers --- # Model card for cs3darknet_focus_m.c2ns_in1k A CS3-DarkNet (Cross-Stage-Partial w/ 3 convolutions) image classification model. Trained on ImageNet-1k in `timm` using recipe template described below. Recipe details: * Based on [ResNet Strikes Back](https://arxiv.org/abs/2110.00476) `C` recipes w/o repeat-aug and stronger mixup * SGD (w/ Nesterov) optimizer and AGC (adaptive gradient clipping) * No stochastic depth used in this `ns` variation of the recipe * Cosine LR schedule with warmup ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 9.3 - GMACs: 2.0 - Activations (M): 4.9 - Image size: train = 256 x 256, test = 288 x 288 - **Papers:** - CSPNet: A New Backbone that can Enhance Learning Capability of CNN: https://arxiv.org/abs/1911.11929 - YOLOv3: An Incremental Improvement: https://arxiv.org/abs/1804.02767 - ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476 - **Original:** https://github.com/huggingface/pytorch-image-models ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('cs3darknet_focus_m.c2ns_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'cs3darknet_focus_m.c2ns_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 48, 128, 128]) # torch.Size([1, 96, 64, 64]) # torch.Size([1, 192, 32, 32]) # torch.Size([1, 384, 16, 16]) # torch.Size([1, 768, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'cs3darknet_focus_m.c2ns_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 768, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{Wang2019CSPNetAN, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)}, year={2019}, pages={1571-1580} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ``` ```bibtex @article{Redmon2018YOLOv3AI, title={YOLOv3: An Incremental Improvement}, author={Joseph Redmon and Ali Farhadi}, journal={ArXiv}, year={2018}, volume={abs/1804.02767} } ``` ```bibtex @inproceedings{wightman2021resnet, title={ResNet strikes back: An improved training procedure in timm}, author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} } ```