--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: t5-large_wic_dense_epochs-5 results: - task: name: Text Classification type: text-classification dataset: name: super_glue type: super_glue config: wic split: validation args: wic metrics: - name: Accuracy type: accuracy value: 0.6598746081504702 --- # t5-large_wic_dense_epochs-5 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7106 - Accuracy: 0.6599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6058 | 2.35 | 50 | 0.7125 | 0.6176 | | 0.4662 | 4.71 | 100 | 0.7054 | 0.6614 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1