--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_sst2_sp0_ar0 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9453125 --- # t5-large_sst2_sp0_ar0 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1944 - Accuracy: 0.9453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6815 | 0.01 | 25 | 0.6999 | 0.5092 | | 0.6592 | 0.01 | 50 | 0.6221 | 0.6445 | | 0.5832 | 0.02 | 75 | 0.4570 | 0.7993 | | 0.2882 | 0.02 | 100 | 0.2076 | 0.9358 | | 0.1894 | 0.03 | 125 | 0.3499 | 0.9404 | | 0.1864 | 0.04 | 150 | 0.2963 | 0.9461 | | 0.2553 | 0.04 | 175 | 0.6929 | 0.9289 | | 0.245 | 0.05 | 200 | 0.4761 | 0.9323 | | 0.2042 | 0.05 | 225 | 0.5294 | 0.9461 | | 0.2002 | 0.06 | 250 | 0.8441 | 0.9472 | | 0.1633 | 0.07 | 275 | 0.8560 | 0.9495 | | 0.1939 | 0.07 | 300 | 0.3197 | 0.9450 | | 0.1928 | 0.08 | 325 | 0.4214 | 0.9472 | | 0.2201 | 0.08 | 350 | 0.5266 | 0.9484 | | 0.143 | 0.09 | 375 | 0.8642 | 0.9450 | | 0.2354 | 0.1 | 400 | 1.2116 | 0.9335 | | 0.1692 | 0.1 | 425 | 0.1807 | 0.9472 | | 0.1531 | 0.11 | 450 | 0.6431 | 0.9484 | | 0.152 | 0.11 | 475 | 1.4046 | 0.9553 | | 0.1948 | 0.12 | 500 | 0.1596 | 0.9553 | | 0.2007 | 0.13 | 525 | 0.1779 | 0.9438 | | 0.1338 | 0.13 | 550 | 0.6476 | 0.9495 | | 0.3812 | 0.14 | 575 | 0.3901 | 0.9484 | | 0.7052 | 0.14 | 600 | 0.1740 | 0.9507 | | 0.8601 | 0.15 | 625 | 1.5226 | 0.9484 | | 1.384 | 0.16 | 650 | 0.6605 | 0.9427 | | 0.6833 | 0.16 | 675 | 0.7313 | 0.9484 | | 0.1833 | 0.17 | 700 | 0.4110 | 0.9438 | | 0.1968 | 0.17 | 725 | 0.2914 | 0.9450 | | 0.2001 | 0.18 | 750 | 0.1947 | 0.9335 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.11.6