--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_sst2_sp0_ar0 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9560546875 --- # t5-large_sst2_sp0_ar0 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3456 - Accuracy: 0.9561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 1 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6852 | 0.01 | 25 | 0.6952 | 0.5092 | | 0.6751 | 0.01 | 50 | 0.6331 | 0.7546 | | 0.603 | 0.02 | 75 | 0.4811 | 0.8899 | | 0.3459 | 0.02 | 100 | 0.2048 | 0.9335 | | 0.1808 | 0.03 | 125 | 0.2377 | 0.9300 | | 0.1933 | 0.04 | 150 | 0.3369 | 0.9323 | | 0.527 | 0.04 | 175 | 0.6582 | 0.9404 | | 0.2241 | 0.05 | 200 | 0.1874 | 0.9507 | | 0.1997 | 0.05 | 225 | 0.5160 | 0.9472 | | 0.2192 | 0.06 | 250 | 0.5193 | 0.9461 | | 0.168 | 0.07 | 275 | 0.4091 | 0.9484 | | 0.1879 | 0.07 | 300 | 0.3114 | 0.9427 | | 0.1653 | 0.08 | 325 | 0.5526 | 0.9484 | | 0.1847 | 0.08 | 350 | 0.6536 | 0.9450 | | 0.1449 | 0.09 | 375 | 0.6520 | 0.9438 | | 0.2485 | 0.1 | 400 | 0.4093 | 0.9518 | | 0.1604 | 0.1 | 425 | 0.2821 | 0.9461 | | 0.1316 | 0.11 | 450 | 0.8609 | 0.9461 | | 0.1754 | 0.11 | 475 | 0.4047 | 0.9472 | | 0.1524 | 0.12 | 500 | 0.4034 | 0.9495 | | 0.4571 | 0.13 | 525 | 0.2895 | 0.9495 | | 0.1448 | 0.13 | 550 | 0.5239 | 0.9484 | | 0.1459 | 0.14 | 575 | 0.2996 | 0.9518 | | 0.2131 | 0.14 | 600 | 0.2983 | 0.9495 | | 0.1298 | 0.15 | 625 | 0.5322 | 0.9484 | | 0.1519 | 0.16 | 650 | 0.5311 | 0.9518 | | 0.1809 | 0.16 | 675 | 0.5271 | 0.9495 | | 0.1495 | 0.17 | 700 | 0.5282 | 0.9495 | | 0.1665 | 0.17 | 725 | 0.5307 | 0.9507 | | 0.1978 | 0.18 | 750 | 0.5295 | 0.9507 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.11.6