--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_sst2_dense_epochs-5 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9575688073394495 --- # t5-large_sst2_dense_epochs-5 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6867 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2069 | 0.38 | 50 | 0.4171 | 0.9438 | | 0.1627 | 0.76 | 100 | 0.3713 | 0.9518 | | 0.1641 | 1.14 | 150 | 0.4802 | 0.9553 | | 0.1261 | 1.52 | 200 | 0.2517 | 0.9541 | | 0.128 | 1.89 | 250 | 0.2427 | 0.9633 | | 0.0765 | 2.27 | 300 | 0.5854 | 0.9622 | | 0.1547 | 2.65 | 350 | 0.6896 | 0.9507 | | 0.0705 | 3.03 | 400 | 0.5790 | 0.9484 | | 0.0683 | 3.41 | 450 | 0.3680 | 0.9564 | | 0.0889 | 3.79 | 500 | 0.6867 | 0.9576 | | 0.1541 | 4.17 | 550 | 0.6979 | 0.9576 | | 0.0689 | 4.55 | 600 | 0.9328 | 0.9507 | | 0.0964 | 4.92 | 650 | 0.6852 | 0.9587 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1