--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: llama_7b_hf_relu_refined_web_relu_2024-03-26 results: [] --- # llama_7b_hf_relu_refined_web_relu_2024-03-26 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 0 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 9.5465 | 0.02 | 25 | 9.1446 | | 7.7377 | 0.03 | 50 | 7.5825 | | 6.5903 | 0.05 | 75 | 6.3866 | | 5.4942 | 0.06 | 100 | 5.3487 | | 4.6502 | 0.08 | 125 | 4.6675 | | 4.2062 | 0.1 | 150 | 4.2042 | | 3.7988 | 0.11 | 175 | 3.8759 | | 3.5327 | 0.13 | 200 | 3.6560 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.2