File size: 1,888 Bytes
841c70d bab3d73 841c70d bab3d73 841c70d bab3d73 841c70d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
metrics:
- accuracy
- matthews_correlation
model-index:
- name: Mistral-7B-v0.1_cola_relu_distillation_ignore_02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.1_cola_relu_distillation_ignore_02
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6546
- Accuracy: {'accuracy': 0.6728971962616822}
- Matthews Correlation: -0.0184
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 2
- distributed_type: multi-GPU
- num_devices: 6
- total_train_batch_size: 96
- total_eval_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:--------------------:|
| 0.8988 | 0.12 | 10 | 0.7592 | {'accuracy': 0.47171620325982744} | -0.0379 |
| 0.6785 | 0.25 | 20 | 0.6739 | {'accuracy': 0.6653883029721956} | -0.0162 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|