File size: 1,888 Bytes
841c70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab3d73
 
 
841c70d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab3d73
841c70d
 
 
bab3d73
 
 
 
841c70d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
metrics:
- accuracy
- matthews_correlation
model-index:
- name: Mistral-7B-v0.1_cola_relu_distillation_ignore_02
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-7B-v0.1_cola_relu_distillation_ignore_02

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6546
- Accuracy: {'accuracy': 0.6728971962616822}
- Matthews Correlation: -0.0184

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 2
- distributed_type: multi-GPU
- num_devices: 6
- total_train_batch_size: 96
- total_eval_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy                          | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:--------------------:|
| 0.8988        | 0.12  | 10   | 0.7592          | {'accuracy': 0.47171620325982744} | -0.0379              |
| 0.6785        | 0.25  | 20   | 0.6739          | {'accuracy': 0.6653883029721956}  | -0.0162              |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0