--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Mistral-7B-v0.1_cola_original_cola results: [] --- # Mistral-7B-v0.1_cola_original_cola This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9858 - Accuracy: 0.8692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 2 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 2 - total_train_batch_size: 768 - total_eval_batch_size: 384 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0563 | 2.38 | 25 | 1.1091 | 0.6347 | | 0.7148 | 4.76 | 50 | 0.7231 | 0.7210 | | 0.5436 | 7.14 | 75 | 0.5349 | 0.7929 | | 0.4144 | 9.52 | 100 | 0.4578 | 0.8159 | | 0.3537 | 11.9 | 125 | 0.4236 | 0.8207 | | 0.3208 | 14.29 | 150 | 0.3996 | 0.8274 | | 0.3204 | 16.67 | 175 | 0.3874 | 0.8322 | | 0.2888 | 19.05 | 200 | 0.3939 | 0.8351 | | 0.2629 | 21.43 | 225 | 0.3837 | 0.8341 | | 0.2288 | 23.81 | 250 | 0.3904 | 0.8437 | | 0.1757 | 26.19 | 275 | 0.4016 | 0.8456 | | 0.1754 | 28.57 | 300 | 0.4165 | 0.8428 | | 0.1137 | 30.95 | 325 | 0.4513 | 0.8447 | | 0.0611 | 33.33 | 350 | 0.5193 | 0.8399 | | 0.0555 | 35.71 | 375 | 0.5863 | 0.8428 | | 0.0346 | 38.1 | 400 | 0.7369 | 0.8313 | | 0.0125 | 40.48 | 425 | 0.7936 | 0.8360 | | 0.0041 | 42.86 | 450 | 0.8821 | 0.8351 | | 0.0052 | 45.24 | 475 | 0.9493 | 0.8332 | | 0.0121 | 47.62 | 500 | 1.0594 | 0.8380 | | 0.0063 | 50.0 | 525 | 1.0706 | 0.8332 | | 0.0025 | 52.38 | 550 | 1.0518 | 0.8303 | | 0.0115 | 54.76 | 575 | 1.0344 | 0.8360 | | 0.0167 | 57.14 | 600 | 1.1477 | 0.8322 | | 0.0096 | 59.52 | 625 | 1.1863 | 0.8341 | | 0.004 | 61.9 | 650 | 1.1809 | 0.8399 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0