--- license: apache-2.0 library_name: peft tags: - trl - reward-trainer - generated_from_trainer metrics: - accuracy base_model: AI-Sweden-Models/gpt-sw3-1.3b model-index: - name: gpt1B_reward_test results: [] --- # gpt1B_reward_test This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6367 - Accuracy: 0.6504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6878 | 0.04 | 200 | 0.6850 | 0.5791 | | 0.6724 | 0.08 | 400 | 0.6740 | 0.6024 | | 0.6611 | 0.13 | 600 | 0.6703 | 0.6081 | | 0.6435 | 0.17 | 800 | 0.6773 | 0.6036 | | 0.6787 | 0.21 | 1000 | 0.6544 | 0.6189 | | 0.7166 | 0.25 | 1200 | 0.6697 | 0.6223 | | 0.614 | 0.3 | 1400 | 0.6590 | 0.6250 | | 0.6279 | 0.34 | 1600 | 0.6422 | 0.6343 | | 0.6185 | 0.38 | 1800 | 0.6427 | 0.6389 | | 0.5539 | 0.42 | 2000 | 0.6459 | 0.6390 | | 0.5988 | 0.47 | 2200 | 0.6485 | 0.6379 | | 0.6096 | 0.51 | 2400 | 0.6570 | 0.6439 | | 0.5898 | 0.55 | 2600 | 0.6381 | 0.6441 | | 0.6366 | 0.59 | 2800 | 0.6479 | 0.6389 | | 0.6457 | 0.64 | 3000 | 0.6397 | 0.6490 | | 0.6171 | 0.68 | 3200 | 0.6476 | 0.6467 | | 0.5262 | 0.72 | 3400 | 0.6506 | 0.6458 | | 0.5723 | 0.76 | 3600 | 0.6467 | 0.6471 | | 0.6194 | 0.81 | 3800 | 0.6393 | 0.6480 | | 0.5946 | 0.85 | 4000 | 0.6375 | 0.6490 | | 0.5868 | 0.89 | 4200 | 0.6366 | 0.6503 | | 0.5905 | 0.93 | 4400 | 0.6367 | 0.6505 | | 0.5651 | 0.97 | 4600 | 0.6367 | 0.6504 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.1 - Pytorch 2.2.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2