--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9419354838709677 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3313 - Accuracy: 0.9419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00016475242401724032 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 0.3697 | 0.9132 | | 1.0928 | 2.0 | 636 | 0.3539 | 0.9226 | | 1.0928 | 3.0 | 954 | 0.3790 | 0.9281 | | 0.1164 | 4.0 | 1272 | 0.3579 | 0.9345 | | 0.0587 | 5.0 | 1590 | 0.3705 | 0.9281 | | 0.0587 | 6.0 | 1908 | 0.3543 | 0.9410 | | 0.0344 | 7.0 | 2226 | 0.3665 | 0.9348 | | 0.0244 | 8.0 | 2544 | 0.3510 | 0.9358 | | 0.0244 | 9.0 | 2862 | 0.3344 | 0.9423 | | 0.0153 | 10.0 | 3180 | 0.3335 | 0.9403 | | 0.0153 | 11.0 | 3498 | 0.3302 | 0.9426 | | 0.0126 | 12.0 | 3816 | 0.3305 | 0.9423 | | 0.0103 | 13.0 | 4134 | 0.3301 | 0.9423 | | 0.0103 | 14.0 | 4452 | 0.3311 | 0.9416 | | 0.0095 | 15.0 | 4770 | 0.3313 | 0.9419 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.4.0 - Tokenizers 0.19.1