--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: whisper-base-common-voice-16-pt-v6 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: pt split: test[0:5400] args: pt metrics: - name: Wer type: wer value: 25.542580301884676 --- # whisper-base-common-voice-16-pt-v6 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3952 - Wer: 25.5426 - Wer Normalized: 19.7098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:| | 0.5344 | 0.37 | 500 | 0.5264 | 35.9965 | 30.1234 | | 0.438 | 0.74 | 1000 | 0.4904 | 33.4453 | 28.3776 | | 0.1871 | 1.11 | 1500 | 0.4595 | 30.3929 | 24.5163 | | 0.1955 | 1.48 | 2000 | 0.4342 | 28.6566 | 22.9762 | | 0.1754 | 1.85 | 2500 | 0.4199 | 28.2674 | 22.4147 | | 0.0649 | 2.22 | 3000 | 0.4090 | 26.7860 | 20.7689 | | 0.0595 | 2.59 | 3500 | 0.4026 | 26.1839 | 20.2018 | | 0.0626 | 2.96 | 4000 | 0.3952 | 25.5426 | 19.7098 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0