--- language: - pt license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper Base using Common Voice 16 (pt) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voices - 16.0 - Portuguese type: mozilla-foundation/common_voice_16_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 25.436328377504847 --- # Whisper Base using Common Voice 16 (pt) This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Mozilla Common Voices - 16.0 - Portuguese dataset. It achieves the following results on the evaluation set: - Loss: 0.3552 - Wer: 25.4363 - Wer Normalized: 19.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:| | 0.6085 | 0.19 | 500 | 0.4465 | 32.1833 | 25.3383 | | 0.4624 | 0.37 | 1000 | 0.4131 | 28.9867 | 22.8488 | | 0.4375 | 0.56 | 1500 | 0.3936 | 27.8135 | 21.3817 | | 0.4372 | 0.74 | 2000 | 0.3784 | 27.5695 | 21.7171 | | 0.4704 | 0.93 | 2500 | 0.3630 | 26.1167 | 20.5133 | | 0.2013 | 1.11 | 3000 | 0.3600 | 25.5462 | 19.7750 | | 0.2261 | 1.3 | 3500 | 0.3570 | 25.5010 | 19.5181 | | 0.2118 | 1.48 | 4000 | 0.3552 | 25.4363 | 19.4668 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0