Update README.md
Browse files
README.md
CHANGED
|
@@ -23,174 +23,6 @@ Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://
|
|
| 23 |
- Supports v3 Tokenizer
|
| 24 |
- Supports function calling
|
| 25 |
|
| 26 |
-
## Installation
|
| 27 |
-
|
| 28 |
-
It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
|
| 29 |
-
|
| 30 |
-
```
|
| 31 |
-
pip install mistral_inference
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
## Download
|
| 35 |
-
|
| 36 |
-
```py
|
| 37 |
-
from huggingface_hub import snapshot_download
|
| 38 |
-
from pathlib import Path
|
| 39 |
-
|
| 40 |
-
mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
|
| 41 |
-
mistral_models_path.mkdir(parents=True, exist_ok=True)
|
| 42 |
-
|
| 43 |
-
snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
### Chat
|
| 47 |
-
|
| 48 |
-
After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
|
| 49 |
-
|
| 50 |
-
```
|
| 51 |
-
mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256
|
| 52 |
-
```
|
| 53 |
-
|
| 54 |
-
### Instruct following
|
| 55 |
-
|
| 56 |
-
```py
|
| 57 |
-
from mistral_inference.model import Transformer
|
| 58 |
-
from mistral_inference.generate import generate
|
| 59 |
-
|
| 60 |
-
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 61 |
-
from mistral_common.protocol.instruct.messages import UserMessage
|
| 62 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
|
| 66 |
-
model = Transformer.from_folder(mistral_models_path)
|
| 67 |
-
|
| 68 |
-
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
|
| 69 |
-
|
| 70 |
-
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
| 71 |
-
|
| 72 |
-
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
| 73 |
-
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
|
| 74 |
-
|
| 75 |
-
print(result)
|
| 76 |
-
```
|
| 77 |
-
|
| 78 |
-
### Function calling
|
| 79 |
-
|
| 80 |
-
```py
|
| 81 |
-
from mistral_common.protocol.instruct.tool_calls import Function, Tool
|
| 82 |
-
from mistral_inference.model import Transformer
|
| 83 |
-
from mistral_inference.generate import generate
|
| 84 |
-
|
| 85 |
-
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
| 86 |
-
from mistral_common.protocol.instruct.messages import UserMessage
|
| 87 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
|
| 91 |
-
model = Transformer.from_folder(mistral_models_path)
|
| 92 |
-
|
| 93 |
-
completion_request = ChatCompletionRequest(
|
| 94 |
-
tools=[
|
| 95 |
-
Tool(
|
| 96 |
-
function=Function(
|
| 97 |
-
name="get_current_weather",
|
| 98 |
-
description="Get the current weather",
|
| 99 |
-
parameters={
|
| 100 |
-
"type": "object",
|
| 101 |
-
"properties": {
|
| 102 |
-
"location": {
|
| 103 |
-
"type": "string",
|
| 104 |
-
"description": "The city and state, e.g. San Francisco, CA",
|
| 105 |
-
},
|
| 106 |
-
"format": {
|
| 107 |
-
"type": "string",
|
| 108 |
-
"enum": ["celsius", "fahrenheit"],
|
| 109 |
-
"description": "The temperature unit to use. Infer this from the users location.",
|
| 110 |
-
},
|
| 111 |
-
},
|
| 112 |
-
"required": ["location", "format"],
|
| 113 |
-
},
|
| 114 |
-
)
|
| 115 |
-
)
|
| 116 |
-
],
|
| 117 |
-
messages=[
|
| 118 |
-
UserMessage(content="What's the weather like today in Paris?"),
|
| 119 |
-
],
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
tokens = tokenizer.encode_chat_completion(completion_request).tokens
|
| 123 |
-
|
| 124 |
-
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
| 125 |
-
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
|
| 126 |
-
|
| 127 |
-
print(result)
|
| 128 |
-
```
|
| 129 |
-
|
| 130 |
-
## Generate with `transformers`
|
| 131 |
-
|
| 132 |
-
If you want to use Hugging Face `transformers` to generate text, you can do something like this.
|
| 133 |
-
|
| 134 |
-
```py
|
| 135 |
-
from transformers import pipeline
|
| 136 |
-
|
| 137 |
-
messages = [
|
| 138 |
-
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 139 |
-
{"role": "user", "content": "Who are you?"},
|
| 140 |
-
]
|
| 141 |
-
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
|
| 142 |
-
chatbot(messages)
|
| 143 |
-
```
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
## Function calling with `transformers`
|
| 147 |
-
|
| 148 |
-
To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the
|
| 149 |
-
[function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
|
| 150 |
-
in the `transformers` docs for more information.
|
| 151 |
-
|
| 152 |
-
```python
|
| 153 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 154 |
-
import torch
|
| 155 |
-
|
| 156 |
-
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 157 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 158 |
-
|
| 159 |
-
def get_current_weather(location: str, format: str):
|
| 160 |
-
"""
|
| 161 |
-
Get the current weather
|
| 162 |
-
|
| 163 |
-
Args:
|
| 164 |
-
location: The city and state, e.g. San Francisco, CA
|
| 165 |
-
format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
|
| 166 |
-
"""
|
| 167 |
-
pass
|
| 168 |
-
|
| 169 |
-
conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
|
| 170 |
-
tools = [get_current_weather]
|
| 171 |
-
|
| 172 |
-
# render the tool use prompt as a string:
|
| 173 |
-
tool_use_prompt = tokenizer.apply_chat_template(
|
| 174 |
-
conversation,
|
| 175 |
-
tools=tools,
|
| 176 |
-
tokenize=False,
|
| 177 |
-
add_generation_prompt=True,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
inputs = tokenizer(tool_use_prompt, return_tensors="pt")
|
| 181 |
-
|
| 182 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
| 183 |
-
|
| 184 |
-
outputs = model.generate(**inputs, max_new_tokens=1000)
|
| 185 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 186 |
-
```
|
| 187 |
-
|
| 188 |
-
Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
|
| 189 |
-
results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
|
| 190 |
-
see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling),
|
| 191 |
-
and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
|
| 192 |
-
exactly 9 alphanumeric characters.
|
| 193 |
-
|
| 194 |
|
| 195 |
## Limitations
|
| 196 |
|
|
|
|
| 23 |
- Supports v3 Tokenizer
|
| 24 |
- Supports function calling
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
## Limitations
|
| 28 |
|