#include #include #include #include #include "utils.h" namespace flash { using namespace cute; //////////////////////////////////////////////////////////////////////////////////////////////////// template struct Alibi { const float alibi_slope; const int max_seqlen_k, max_seqlen_q; __forceinline__ __device__ Alibi(const float alibi_slope, const int max_seqlen_k, const int max_seqlen_q) : alibi_slope(alibi_slope) , max_seqlen_k(max_seqlen_k) , max_seqlen_q(max_seqlen_q) { }; template __forceinline__ __device__ void apply_alibi(Tensor &tensor, const int col_idx_offset_, const int row_idx_offset, const int warp_row_stride) { // tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N)) static_assert(Layout::rank == 2, "Only support 2D Tensor"); const int lane_id = threadIdx.x % 32; const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2; if constexpr (Is_causal) { // Simpler, we add the same bias vector to all rows #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; #pragma unroll for (int mi = 0; mi < size<0>(tensor); ++mi) { tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx; } } } } else { // Bias depends on both row_idx and col_idx #pragma unroll for (int mi = 0; mi < size<0, 1>(tensor); ++mi) { const int row_idx_base = row_idx_offset + mi * warp_row_stride; #pragma unroll for (int i = 0; i < size<0, 0>(tensor); ++i) { const int row_idx = row_idx_base + i * 8; #pragma unroll for (int nj = 0; nj < size<1, 1>(tensor); ++nj) { const int col_idx_base = col_idx_offset + nj * 8; #pragma unroll for (int j = 0; j < size<1, 0>(tensor); ++j) { const int col_idx = col_idx_base + j; tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx); } } } } } } }; } // namespace flash