|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include "cuda_bf16_wrapper.h" |
|
#include "cuda_bf16_fallbacks.cuh" |
|
#include <stdint.h> |
|
|
|
using namespace fastertransformer; |
|
|
|
namespace mmha { |
|
|
|
|
|
|
|
struct Float8_ { |
|
float2 x; |
|
float2 y; |
|
float2 z; |
|
float2 w; |
|
}; |
|
|
|
|
|
|
|
struct Float4_ { |
|
float2 x; |
|
float2 y; |
|
}; |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
struct bf16_4_t { |
|
__nv_bfloat162 x; |
|
__nv_bfloat162 y; |
|
}; |
|
|
|
|
|
|
|
struct bf16_8_t { |
|
__nv_bfloat162 x; |
|
__nv_bfloat162 y; |
|
__nv_bfloat162 z; |
|
__nv_bfloat162 w; |
|
}; |
|
#endif |
|
|
|
|
|
|
|
template<typename T> |
|
struct num_elems; |
|
template<> |
|
struct num_elems<float> { |
|
static constexpr int value = 1; |
|
}; |
|
template<> |
|
struct num_elems<float2> { |
|
static constexpr int value = 2; |
|
}; |
|
template<> |
|
struct num_elems<float4> { |
|
static constexpr int value = 4; |
|
}; |
|
template<> |
|
struct num_elems<Float4_> { |
|
static constexpr int value = 4; |
|
}; |
|
template<> |
|
struct num_elems<Float8_> { |
|
static constexpr int value = 8; |
|
}; |
|
|
|
template<> |
|
struct num_elems<uint32_t> { |
|
static constexpr int value = 2; |
|
}; |
|
template<> |
|
struct num_elems<uint2> { |
|
static constexpr int value = 4; |
|
}; |
|
template<> |
|
struct num_elems<uint4> { |
|
static constexpr int value = 8; |
|
}; |
|
|
|
#ifdef ENABLE_BF16 |
|
template<> |
|
struct num_elems<__nv_bfloat162> { |
|
static constexpr int value = 2; |
|
}; |
|
template<> |
|
struct num_elems<bf16_4_t> { |
|
static constexpr int value = 4; |
|
}; |
|
template<> |
|
struct num_elems<bf16_8_t> { |
|
static constexpr int value = 8; |
|
}; |
|
#endif |
|
|
|
|
|
|
|
template<typename T, int N> |
|
struct packed_type; |
|
template<typename T> |
|
struct packed_type<T, 1> { |
|
using type = T; |
|
}; |
|
template<> |
|
struct packed_type<int8_t, 2> { |
|
using type = int16_t; |
|
}; |
|
template<> |
|
struct packed_type<int8_t, 4> { |
|
using type = int32_t; |
|
}; |
|
template<> |
|
struct packed_type<int8_t, 8> { |
|
using type = int64_t; |
|
}; |
|
|
|
template<> |
|
struct packed_type<float, 2> { |
|
using type = float2; |
|
}; |
|
template<> |
|
struct packed_type<float, 4> { |
|
using type = float4; |
|
}; |
|
template<> |
|
struct packed_type<float, 8> { |
|
using type = Float8_; |
|
}; |
|
|
|
|
|
|
|
inline __device__ float add(float a, float b) |
|
{ |
|
return a + b; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 add(float2 a, float2 b) |
|
{ |
|
float2 c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ float4 add(float4 a, float4 b) |
|
{ |
|
float4 c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
c.z = add(a.z, b.z); |
|
c.w = add(a.w, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) |
|
{ |
|
return a + b; |
|
} |
|
|
|
|
|
|
|
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) |
|
{ |
|
return bf16hadd2(a, b); |
|
} |
|
|
|
|
|
|
|
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) |
|
{ |
|
bf16_4_t c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) |
|
{ |
|
bf16_8_t c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
c.z = add(a.z, b.z); |
|
c.w = add(a.w, b.w); |
|
return c; |
|
} |
|
#endif |
|
|
|
|
|
|
|
inline __device__ uint16_t add(uint16_t a, uint16_t b) |
|
{ |
|
uint16_t c; |
|
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b)); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint32_t add(uint32_t a, uint32_t b) |
|
{ |
|
uint32_t c; |
|
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b)); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint2 add(uint2 a, uint2 b) |
|
{ |
|
uint2 c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint4 add(uint4 a, uint4 b) |
|
{ |
|
uint4 c; |
|
c.x = add(a.x, b.x); |
|
c.y = add(a.y, b.y); |
|
c.z = add(a.z, b.z); |
|
c.w = add(a.w, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint16_t float_to_half(float f) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp; |
|
#if 0 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 |
|
float zero = 0.f; |
|
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(zero), "f"(f)); |
|
#else |
|
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f)); |
|
#endif |
|
return tmp.u16[0]; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint32_t float2_to_half2(float2 f) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp; |
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 |
|
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x)); |
|
#else |
|
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x)); |
|
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y)); |
|
#endif |
|
return tmp.u32; |
|
} |
|
|
|
|
|
|
|
inline __device__ float half_to_float(uint16_t h) |
|
{ |
|
float f; |
|
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h)); |
|
return f; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 half2_to_float2(uint32_t v) |
|
{ |
|
uint16_t lo, hi; |
|
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v)); |
|
return make_float2(half_to_float(lo), half_to_float(hi)); |
|
} |
|
|
|
|
|
|
|
inline __device__ float add(float a, uint16_t b) |
|
{ |
|
return a + half_to_float(b); |
|
} |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ float add(float a, __nv_bfloat16 b) |
|
{ |
|
return a + __bfloat162float(b); |
|
} |
|
#endif |
|
|
|
|
|
|
|
inline __device__ float2 add(uint32_t a, float2 fb) |
|
{ |
|
float2 fa = half2_to_float2(a); |
|
return add(fa, fb); |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ add(uint2 a, Float4_ fb) |
|
{ |
|
Float4_ fc; |
|
fc.x = add(a.x, fb.x); |
|
fc.y = add(a.y, fb.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ add(uint4 a, Float8_ fb) |
|
{ |
|
Float8_ fc; |
|
fc.x = add(a.x, fb.x); |
|
fc.y = add(a.y, fb.y); |
|
fc.z = add(a.z, fb.z); |
|
fc.w = add(a.w, fb.w); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint32_t h0_h0(uint16_t a) |
|
{ |
|
uint32_t b; |
|
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a)); |
|
return b; |
|
} |
|
|
|
|
|
|
|
inline __device__ float fma(float a, float b, float c) |
|
{ |
|
return a * b + c; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(float2 a, float2 b, float2 c) |
|
{ |
|
float2 d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(float a, float2 b, float2 c) |
|
{ |
|
float2 d; |
|
d.x = fma(a, b.x, c.x); |
|
d.y = fma(a, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ float4 fma(float4 a, float4 b, float4 c) |
|
{ |
|
float4 d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
d.z = fma(a.z, b.z, c.z); |
|
d.w = fma(a.w, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ float4 fma(float a, float4 b, float4 c) |
|
{ |
|
float4 d; |
|
d.x = fma(a, b.x, c.x); |
|
d.y = fma(a, b.y, c.y); |
|
d.z = fma(a, b.z, c.z); |
|
d.w = fma(a, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c) |
|
{ |
|
Float4_ d; |
|
d.x = fma(a, b.x, c.x); |
|
d.y = fma(a, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c) |
|
{ |
|
Float8_ d; |
|
d.x = fma(a, b.x, c.x); |
|
d.y = fma(a, b.y, c.y); |
|
d.z = fma(a, b.z, c.z); |
|
d.w = fma(a, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ float2 add(__nv_bfloat162 a, float2 fb) |
|
{ |
|
float2 fa = bf1622float2(a); |
|
return add(fa, fb); |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) |
|
{ |
|
Float4_ fc; |
|
fc.x = add(a.x, fb.x); |
|
fc.y = add(a.y, fb.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) |
|
{ |
|
Float8_ fc; |
|
fc.x = add(a.x, fb.x); |
|
fc.y = add(a.y, fb.y); |
|
fc.z = add(a.z, fb.z); |
|
fc.w = add(a.w, fb.w); |
|
return fc; |
|
} |
|
#endif |
|
|
|
|
|
|
|
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) |
|
{ |
|
uint32_t d; |
|
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c)); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c) |
|
{ |
|
return fma(h0_h0(a), b, c); |
|
} |
|
|
|
|
|
|
|
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c) |
|
{ |
|
uint2 d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
uint2 d; |
|
d.x = fma(s, b.x, c.x); |
|
d.y = fma(s, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c) |
|
{ |
|
uint4 d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
d.z = fma(a.z, b.z, c.z); |
|
d.w = fma(a.w, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
uint4 d; |
|
d.x = fma(s, b.x, c.x); |
|
d.y = fma(s, b.y, c.y); |
|
d.z = fma(s, b.z, c.z); |
|
d.w = fma(s, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ float fma(uint16_t a, uint16_t b, float fc) |
|
{ |
|
float fa = half_to_float(a); |
|
float fb = half_to_float(b); |
|
return fa * fb + fc; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc) |
|
{ |
|
float2 fa = half2_to_float2(a); |
|
float2 fb = half2_to_float2(b); |
|
return fma(fa, fb, fc); |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc) |
|
{ |
|
return fma(h0_h0(a), b, fc); |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc) |
|
{ |
|
Float4_ fd; |
|
fd.x = fma(a.x, b.x, fc.x); |
|
fd.y = fma(a.y, b.y, fc.y); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
Float4_ fd; |
|
fd.x = fma(s, b.x, fc.x); |
|
fd.y = fma(s, b.y, fc.y); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc) |
|
{ |
|
Float8_ fd; |
|
fd.x = fma(a.x, b.x, fc.x); |
|
fd.y = fma(a.y, b.y, fc.y); |
|
fd.z = fma(a.z, b.z, fc.z); |
|
fd.w = fma(a.w, b.w, fc.w); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
Float8_ fd; |
|
fd.x = fma(s, b.x, fc.x); |
|
fd.y = fma(s, b.y, fc.y); |
|
fd.z = fma(s, b.z, fc.z); |
|
fd.w = fma(s, b.w, fc.w); |
|
return fd; |
|
} |
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) |
|
{ |
|
return bf16hfma2(a, b, c); |
|
} |
|
|
|
|
|
|
|
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c) |
|
{ |
|
return bf16hfma2(bf162bf162(a), b, c); |
|
} |
|
|
|
|
|
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) |
|
{ |
|
bf16_4_t d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
bf16_4_t d; |
|
d.x = fma(s, b.x, c.x); |
|
d.y = fma(s, b.y, c.y); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) |
|
{ |
|
bf16_8_t d; |
|
d.x = fma(a.x, b.x, c.x); |
|
d.y = fma(a.y, b.y, c.y); |
|
d.z = fma(a.z, b.z, c.z); |
|
d.w = fma(a.w, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
bf16_8_t d; |
|
d.x = fma(s, b.x, c.x); |
|
d.y = fma(s, b.y, c.y); |
|
d.z = fma(s, b.z, c.z); |
|
d.w = fma(s, b.w, c.w); |
|
return d; |
|
} |
|
|
|
|
|
|
|
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) |
|
{ |
|
return __bfloat162float(a) * __bfloat162float(b) + fc; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) |
|
{ |
|
float2 fa = bf1622float2(a); |
|
float2 fb = bf1622float2(b); |
|
return fma(fa, fb, fc); |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) |
|
{ |
|
return fma(bf162bf162(a), b, fc); |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) |
|
{ |
|
Float4_ fd; |
|
fd.x = fma(a.x, b.x, fc.x); |
|
fd.y = fma(a.y, b.y, fc.y); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
Float4_ fd; |
|
fd.x = fma(s, b.x, fc.x); |
|
fd.y = fma(s, b.y, fc.y); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) |
|
{ |
|
Float8_ fd; |
|
fd.x = fma(a.x, b.x, fc.x); |
|
fd.y = fma(a.y, b.y, fc.y); |
|
fd.z = fma(a.z, b.z, fc.z); |
|
fd.w = fma(a.w, b.w, fc.w); |
|
return fd; |
|
} |
|
|
|
|
|
|
|
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
Float8_ fd; |
|
fd.x = fma(s, b.x, fc.x); |
|
fd.y = fma(s, b.y, fc.y); |
|
fd.z = fma(s, b.z, fc.z); |
|
fd.w = fma(s, b.w, fc.w); |
|
return fd; |
|
} |
|
#endif |
|
|
|
|
|
template<typename Acc, typename A, typename B> |
|
inline __device__ Acc mul(A a, B b) |
|
{ |
|
return a * b; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float mul<float, float>(float a, float b) |
|
{ |
|
return a * b; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(float2 a, float2 b) |
|
{ |
|
float2 c; |
|
c.x = a.x * b.x; |
|
c.y = a.y * b.y; |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(float a, float2 b) |
|
{ |
|
float2 c; |
|
c.x = a * b.x; |
|
c.y = a * b.y; |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float4 mul(float4 a, float4 b) |
|
{ |
|
float4 c; |
|
c.x = a.x * b.x; |
|
c.y = a.y * b.y; |
|
c.z = a.z * b.z; |
|
c.w = a.w * b.w; |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float4 mul(float a, float4 b) |
|
{ |
|
float4 c; |
|
c.x = a * b.x; |
|
c.y = a * b.y; |
|
c.z = a * b.z; |
|
c.w = a * b.w; |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float8_ mul(float a, Float8_ b) |
|
{ |
|
Float8_ c; |
|
c.x = make_float2(a * b.x.x, a * b.x.y); |
|
c.y = make_float2(a * b.y.x, a * b.y.y); |
|
c.z = make_float2(a * b.z.x, a * b.z.y); |
|
c.w = make_float2(a * b.w.x, a * b.w.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint16_t mul(uint16_t a, uint16_t b) |
|
{ |
|
uint16_t c; |
|
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b)); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint32_t mul(uint32_t a, uint32_t b) |
|
{ |
|
uint32_t c; |
|
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b)); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint32_t mul(uint16_t a, uint32_t b) |
|
{ |
|
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint2 mul(uint2 a, uint2 b) |
|
{ |
|
uint2 c; |
|
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x); |
|
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint2 mul(uint16_t a, uint2 b) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
uint2 c; |
|
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x); |
|
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint4 mul(uint4 a, uint4 b) |
|
{ |
|
uint4 c; |
|
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x); |
|
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y); |
|
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z); |
|
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ uint4 mul(uint16_t a, uint4 b) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
uint4 c; |
|
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x); |
|
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y); |
|
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z); |
|
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float mul(uint16_t a, uint16_t b) |
|
{ |
|
float fa = half_to_float(a); |
|
float fb = half_to_float(b); |
|
return fa * fb; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float mul(uint16_t a, float b) |
|
{ |
|
return half_to_float(a) * b; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(uint32_t a, uint32_t b) |
|
{ |
|
float2 fa = half2_to_float2(a); |
|
float2 fb = half2_to_float2(b); |
|
return mul<float2, float2, float2>(fa, fb); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(uint16_t a, uint32_t b) |
|
{ |
|
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float4_ mul(uint2 a, uint2 b) |
|
{ |
|
Float4_ fc; |
|
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x); |
|
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float4_ mul(uint16_t a, uint2 b) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
Float4_ fc; |
|
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x); |
|
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float8_ mul(uint4 a, uint4 b) |
|
{ |
|
Float8_ fc; |
|
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x); |
|
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y); |
|
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z); |
|
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float8_ mul(uint16_t a, uint4 b) |
|
{ |
|
uint32_t s = h0_h0(a); |
|
Float8_ fc; |
|
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x); |
|
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y); |
|
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z); |
|
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
template<> |
|
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) |
|
{ |
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 |
|
return __hmul(a, b); |
|
#else |
|
return bf16hmul(a, b); |
|
#endif |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) |
|
{ |
|
return bf16hmul2(a, b); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) |
|
{ |
|
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) |
|
{ |
|
bf16_4_t c; |
|
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); |
|
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
bf16_4_t c; |
|
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x); |
|
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) |
|
{ |
|
bf16_8_t c; |
|
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); |
|
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); |
|
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z); |
|
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
bf16_8_t c; |
|
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x); |
|
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y); |
|
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z); |
|
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w); |
|
return c; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) |
|
{ |
|
float fa = (float)a; |
|
float fb = (float)b; |
|
return fa * fb; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float mul(__nv_bfloat16 a, float b) |
|
{ |
|
return __bfloat162float(a) * b; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) |
|
{ |
|
float2 fa = bf1622float2(a); |
|
float2 fb = bf1622float2(b); |
|
return mul<float2, float2, float2>(fa, fb); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) |
|
{ |
|
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b); |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) |
|
{ |
|
Float4_ fc; |
|
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); |
|
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
Float4_ fc; |
|
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x); |
|
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) |
|
{ |
|
Float8_ fc; |
|
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x); |
|
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y); |
|
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z); |
|
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w); |
|
return fc; |
|
} |
|
|
|
|
|
|
|
template<> |
|
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) |
|
{ |
|
__nv_bfloat162 s = bf162bf162(a); |
|
Float8_ fc; |
|
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x); |
|
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y); |
|
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z); |
|
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w); |
|
return fc; |
|
} |
|
#endif |
|
|
|
|
|
inline __device__ float sum(float v) |
|
{ |
|
return v; |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(float2 v) |
|
{ |
|
return v.x + v.y; |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(float4 v) |
|
{ |
|
return v.x + v.y + v.z + v.w; |
|
} |
|
|
|
|
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ float sum(__nv_bfloat162 v) |
|
{ |
|
float2 vf = bf1622float2(v); |
|
return vf.x + vf.y; |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(bf16_4_t v) |
|
{ |
|
return sum(v.x) + sum(v.y); |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(bf16_8_t v) |
|
{ |
|
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w); |
|
} |
|
#endif |
|
|
|
|
|
inline __device__ float sum(uint16_t v) |
|
{ |
|
return half_to_float(v); |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(uint32_t v) |
|
{ |
|
float2 tmp = half2_to_float2(v); |
|
return tmp.x + tmp.y; |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(uint2 v) |
|
{ |
|
uint32_t c = add(v.x, v.y); |
|
return sum(c); |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(uint4 v) |
|
{ |
|
#if 1 |
|
uint32_t c = add(v.x, v.y); |
|
c = add(c, v.z); |
|
c = add(c, v.w); |
|
#else |
|
uint32_t c = add(v.x, v.y); |
|
uint32_t d = add(v.z, v.w); |
|
c = add(c, d); |
|
#endif |
|
return sum(c); |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(Float4_ v) |
|
{ |
|
return v.x.x + v.x.y + v.y.x + v.y.y; |
|
} |
|
|
|
|
|
|
|
inline __device__ float sum(Float8_ v) |
|
{ |
|
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y; |
|
} |
|
|
|
|
|
|
|
template<typename T> |
|
inline __device__ float dot(T a, T b) |
|
{ |
|
return sum(mul<T, T, T>(a, b)); |
|
} |
|
|
|
|
|
|
|
template<typename A, typename T> |
|
inline __device__ float dot(T a, T b) |
|
{ |
|
return sum(mul<A, T, T>(a, b)); |
|
} |
|
|
|
|
|
|
|
inline __device__ void zero(uint16_t& dst) |
|
{ |
|
dst = uint16_t(0); |
|
} |
|
|
|
|
|
|
|
template<typename T> |
|
inline __device__ void zero(T& dst) |
|
{ |
|
constexpr int WORDS = sizeof(T) / 4; |
|
union { |
|
T raw; |
|
uint32_t words[WORDS]; |
|
} tmp; |
|
#pragma unroll |
|
for (int ii = 0; ii < WORDS; ++ii) { |
|
tmp.words[ii] = 0u; |
|
} |
|
dst = tmp.raw; |
|
} |
|
|
|
|
|
|
|
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int rot_embed_dim, const int t_step, const float base) |
|
{ |
|
const float pos_idx_inv_freq = t_step / pow(base, zid / (float)rot_embed_dim); |
|
return {cos(pos_idx_inv_freq), sin(pos_idx_inv_freq)}; |
|
} |
|
|
|
inline __device__ float2 rotary_embedding_transform(const float2 v, const float2 coef) |
|
{ |
|
float2 rot_v; |
|
rot_v.x = coef.x * v.x - coef.y * v.y; |
|
rot_v.y = coef.x * v.y + coef.y * v.x; |
|
return rot_v; |
|
} |
|
|
|
inline __device__ uint32_t rotary_embedding_transform(const uint32_t v, const float2 coef) |
|
{ |
|
float2 fv = half2_to_float2(v); |
|
float2 rot_fv = rotary_embedding_transform(fv, coef); |
|
return float2_to_half2(rot_fv); |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ __nv_bfloat162 rotary_embedding_transform(const __nv_bfloat162 v, const float2 coef) |
|
{ |
|
float2 fv = bf1622float2(v); |
|
float2 rot_fv = rotary_embedding_transform(fv, coef); |
|
return __floats2bfloat162_rn(rot_fv.x, rot_fv.y); |
|
} |
|
#endif |
|
|
|
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
return; |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
return; |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
|
|
Float4_& q_ = *reinterpret_cast<Float4_*>(&q); |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q_.x = rotary_embedding_transform(q_.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q_.y = rotary_embedding_transform(q_.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
|
|
Float4_& q_ = *reinterpret_cast<Float4_*>(&q); |
|
Float4_& k_ = *reinterpret_cast<Float4_*>(&k); |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q_.x = rotary_embedding_transform(q_.x, coef0); |
|
k_.x = rotary_embedding_transform(k_.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q_.y = rotary_embedding_transform(q_.y, coef1); |
|
k_.y = rotary_embedding_transform(k_.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
k.z = rotary_embedding_transform(k.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
k.w = rotary_embedding_transform(k.w, coef3); |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
k.z = rotary_embedding_transform(k.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
k.w = rotary_embedding_transform(k.w, coef3); |
|
} |
|
#endif |
|
|
|
template <typename T> |
|
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int t_step, const T* rotary_cos, const T* rotary_sin) |
|
{ |
|
|
|
|
|
return {float(rotary_cos[zid / 2]), float(rotary_sin[zid / 2])}; |
|
} |
|
|
|
|
|
template <> |
|
inline __device__ float2 rotary_embedding_coefficient<uint16_t>(const int zid, const int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
|
|
|
|
return {float(reinterpret_cast<const __half*>(rotary_cos)[zid / 2]), |
|
float(reinterpret_cast<const __half*>(rotary_sin)[zid / 2])}; |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
return; |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
return; |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
|
|
Float4_& q_ = *reinterpret_cast<Float4_*>(&q); |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q_.x = rotary_embedding_transform(q_.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q_.y = rotary_embedding_transform(q_.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
|
|
Float4_& q_ = *reinterpret_cast<Float4_*>(&q); |
|
Float4_& k_ = *reinterpret_cast<Float4_*>(&k); |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q_.x = rotary_embedding_transform(q_.x, coef0); |
|
k_.x = rotary_embedding_transform(k_.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q_.y = rotary_embedding_transform(q_.y, coef1); |
|
k_.y = rotary_embedding_transform(k_.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
k.z = rotary_embedding_transform(k.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
k.w = rotary_embedding_transform(k.w, coef3); |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (2 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin); |
|
q = rotary_embedding_transform(q, coef); |
|
k = rotary_embedding_transform(k, coef); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (4 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
} |
|
|
|
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin) |
|
{ |
|
if (8 * tid >= rot_embed_dim) { |
|
return; |
|
} |
|
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin); |
|
q.x = rotary_embedding_transform(q.x, coef0); |
|
k.x = rotary_embedding_transform(k.x, coef0); |
|
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin); |
|
q.y = rotary_embedding_transform(q.y, coef1); |
|
k.y = rotary_embedding_transform(k.y, coef1); |
|
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin); |
|
q.z = rotary_embedding_transform(q.z, coef2); |
|
k.z = rotary_embedding_transform(k.z, coef2); |
|
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin); |
|
q.w = rotary_embedding_transform(q.w, coef3); |
|
k.w = rotary_embedding_transform(k.w, coef3); |
|
} |
|
#endif |
|
|
|
template<typename Vec_T, typename T> |
|
__device__ __inline__ void vec_from_smem_transpose(Vec_T& vec, T* smem, int transpose_idx, int smem_pitch); |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(float& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
return; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp; |
|
tmp.u16[0] = smem[transpose_idx]; |
|
tmp.u16[1] = smem[smem_pitch + transpose_idx]; |
|
|
|
vec = tmp.u32; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp_1, tmp_2; |
|
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]); |
|
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]); |
|
|
|
union { |
|
uint2 u32x2; |
|
uint16_t u16[4]; |
|
} tmp_3; |
|
tmp_3.u16[0] = tmp_1.u16[0]; |
|
tmp_3.u16[1] = tmp_2.u16[0]; |
|
tmp_3.u16[2] = tmp_1.u16[1]; |
|
tmp_3.u16[3] = tmp_2.u16[1]; |
|
|
|
vec = tmp_3.u32x2; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint64_t u64; |
|
uint16_t u16[4]; |
|
} tmp_1, tmp_2; |
|
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]); |
|
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]); |
|
|
|
union { |
|
uint4 u32x4; |
|
uint16_t u16[8]; |
|
} tmp_3; |
|
tmp_3.u16[0] = tmp_1.u16[0]; |
|
tmp_3.u16[1] = tmp_2.u16[0]; |
|
tmp_3.u16[2] = tmp_1.u16[1]; |
|
tmp_3.u16[3] = tmp_2.u16[1]; |
|
tmp_3.u16[4] = tmp_1.u16[2]; |
|
tmp_3.u16[5] = tmp_2.u16[2]; |
|
tmp_3.u16[6] = tmp_1.u16[3]; |
|
tmp_3.u16[7] = tmp_2.u16[3]; |
|
|
|
vec = tmp_3.u32x4; |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
template<> |
|
__device__ __inline__ void |
|
vec_from_smem_transpose(bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
__nv_bfloat16 bf16[2]; |
|
} tmp_1, tmp_2; |
|
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]); |
|
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]); |
|
|
|
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]}; |
|
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]}; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void |
|
vec_from_smem_transpose(bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint64_t u64; |
|
__nv_bfloat16 bf16[4]; |
|
} tmp_1, tmp_2; |
|
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]); |
|
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]); |
|
|
|
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]}; |
|
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]}; |
|
vec.z = __nv_bfloat162{tmp_1.bf16[2], tmp_2.bf16[2]}; |
|
vec.w = __nv_bfloat162{tmp_1.bf16[3], tmp_2.bf16[3]}; |
|
} |
|
#endif |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(float4& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
vec.x = smem[transpose_idx]; |
|
vec.z = smem[transpose_idx + 1]; |
|
vec.y = smem[smem_pitch + transpose_idx]; |
|
vec.w = smem[smem_pitch + transpose_idx + 1]; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, half* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
half u16[2]; |
|
} tmp; |
|
tmp.u16[0] = smem[transpose_idx]; |
|
tmp.u16[1] = smem[smem_pitch + transpose_idx]; |
|
|
|
vec = tmp.u32; |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
template<> |
|
__device__ __inline__ void |
|
vec_from_smem_transpose(__nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
vec.x = smem[transpose_idx]; |
|
vec.y = smem[smem_pitch + transpose_idx]; |
|
} |
|
#endif |
|
|
|
template<> |
|
__device__ __inline__ void vec_from_smem_transpose(float2& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
vec.x = smem[transpose_idx]; |
|
vec.y = smem[smem_pitch + transpose_idx]; |
|
} |
|
|
|
template<typename Vec_T, typename T> |
|
__device__ __inline__ void write_smem_transpose(const Vec_T& vec, T* smem, int transpose_idx, int smem_pitch); |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const float& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
return; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint64_t u64; |
|
uint16_t u16[4]; |
|
} tmp_1, tmp_2; |
|
|
|
union { |
|
uint4 u32x4; |
|
uint16_t u16[8]; |
|
} tmp_3; |
|
tmp_3.u32x4 = vec; |
|
tmp_1.u16[0] = tmp_3.u16[0]; |
|
tmp_2.u16[0] = tmp_3.u16[1]; |
|
tmp_1.u16[1] = tmp_3.u16[2]; |
|
tmp_2.u16[1] = tmp_3.u16[3]; |
|
tmp_1.u16[2] = tmp_3.u16[4]; |
|
tmp_2.u16[2] = tmp_3.u16[5]; |
|
tmp_1.u16[3] = tmp_3.u16[6]; |
|
tmp_2.u16[3] = tmp_3.u16[7]; |
|
|
|
*reinterpret_cast<uint64_t*>(&smem[transpose_idx]) = tmp_1.u64; |
|
*reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u64; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp_1, tmp_2; |
|
|
|
union { |
|
uint2 u32x2; |
|
uint16_t u16[4]; |
|
} tmp_3; |
|
tmp_3.u32x2 = vec; |
|
tmp_1.u16[0] = tmp_3.u16[0]; |
|
tmp_2.u16[0] = tmp_3.u16[1]; |
|
tmp_1.u16[1] = tmp_3.u16[2]; |
|
tmp_2.u16[1] = tmp_3.u16[3]; |
|
|
|
*reinterpret_cast<uint32_t*>(&smem[transpose_idx]) = tmp_1.u32; |
|
*reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u32; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
uint16_t u16[2]; |
|
} tmp; |
|
tmp.u32 = vec; |
|
|
|
smem[transpose_idx] = tmp.u16[0]; |
|
smem[smem_pitch + transpose_idx] = tmp.u16[1]; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const float4& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
smem[transpose_idx] = vec.x; |
|
smem[transpose_idx + 1] = vec.z; |
|
smem[smem_pitch + transpose_idx] = vec.y; |
|
smem[smem_pitch + transpose_idx + 1] = vec.w; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, half* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
union { |
|
uint32_t u32; |
|
half u16[2]; |
|
} tmp; |
|
|
|
tmp.u32 = vec; |
|
smem[transpose_idx] = tmp.u16[0]; |
|
smem[smem_pitch + transpose_idx] = tmp.u16[1]; |
|
} |
|
|
|
#ifdef ENABLE_BF16 |
|
template<> |
|
__device__ __inline__ void |
|
write_smem_transpose(const __nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
smem[transpose_idx] = vec.x; |
|
smem[smem_pitch + transpose_idx] = vec.y; |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void |
|
write_smem_transpose(const bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
write_smem_transpose(reinterpret_cast<const uint2&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch); |
|
} |
|
|
|
template<> |
|
__device__ __inline__ void |
|
write_smem_transpose(const bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
write_smem_transpose(reinterpret_cast<const uint4&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch); |
|
} |
|
#endif |
|
|
|
template<> |
|
__device__ __inline__ void write_smem_transpose(const float2& vec, float* smem, int transpose_idx, int smem_pitch) |
|
{ |
|
smem[transpose_idx] = vec.x; |
|
smem[smem_pitch + transpose_idx] = vec.y; |
|
} |
|
|
|
} |
|
|