flash-attention / decoder_masked_multihead_attention_utils.h
theonlyengine's picture
Upload 421 files
3f9c425 verified
// Downloaded from from FasterTransformer v5.2.1
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "cuda_bf16_wrapper.h"
#include "cuda_bf16_fallbacks.cuh"
#include <stdint.h>
using namespace fastertransformer;
namespace mmha {
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Float8_ {
float2 x;
float2 y;
float2 z;
float2 w;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Float4_ {
float2 x;
float2 y;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
struct bf16_4_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct bf16_8_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
__nv_bfloat162 z;
__nv_bfloat162 w;
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct num_elems;
template<>
struct num_elems<float> {
static constexpr int value = 1;
};
template<>
struct num_elems<float2> {
static constexpr int value = 2;
};
template<>
struct num_elems<float4> {
static constexpr int value = 4;
};
template<>
struct num_elems<Float4_> {
static constexpr int value = 4;
};
template<>
struct num_elems<Float8_> {
static constexpr int value = 8;
};
template<>
struct num_elems<uint32_t> {
static constexpr int value = 2;
};
template<>
struct num_elems<uint2> {
static constexpr int value = 4;
};
template<>
struct num_elems<uint4> {
static constexpr int value = 8;
};
#ifdef ENABLE_BF16
template<>
struct num_elems<__nv_bfloat162> {
static constexpr int value = 2;
};
template<>
struct num_elems<bf16_4_t> {
static constexpr int value = 4;
};
template<>
struct num_elems<bf16_8_t> {
static constexpr int value = 8;
};
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T, int N>
struct packed_type;
template<typename T>
struct packed_type<T, 1> {
using type = T;
};
template<>
struct packed_type<int8_t, 2> {
using type = int16_t;
};
template<>
struct packed_type<int8_t, 4> {
using type = int32_t;
};
template<>
struct packed_type<int8_t, 8> {
using type = int64_t;
};
template<>
struct packed_type<float, 2> {
using type = float2;
};
template<>
struct packed_type<float, 4> {
using type = float4;
};
template<>
struct packed_type<float, 8> {
using type = Float8_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float add(float a, float b)
{
return a + b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 add(float2 a, float2 b)
{
float2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float4 add(float4 a, float4 b)
{
float4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b)
{
return a + b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b)
{
return bf16hadd2(a, b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b)
{
bf16_4_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b)
{
bf16_8_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint16_t add(uint16_t a, uint16_t b)
{
uint16_t c;
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint32_t add(uint32_t a, uint32_t b)
{
uint32_t c;
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint2 add(uint2 a, uint2 b)
{
uint2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint4 add(uint4 a, uint4 b)
{
uint4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint16_t float_to_half(float f)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
#if 0 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 // Is it better?
float zero = 0.f;
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(zero), "f"(f));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
#endif
return tmp.u16[0];
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint32_t float2_to_half2(float2 f)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
#endif
return tmp.u32;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float half_to_float(uint16_t h)
{
float f;
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
return f;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 half2_to_float2(uint32_t v)
{
uint16_t lo, hi;
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
return make_float2(half_to_float(lo), half_to_float(hi));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float add(float a, uint16_t b)
{
return a + half_to_float(b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ float add(float a, __nv_bfloat16 b)
{
return a + __bfloat162float(b);
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 add(uint32_t a, float2 fb)
{
float2 fa = half2_to_float2(a);
return add(fa, fb);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ add(uint2 a, Float4_ fb)
{
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ add(uint4 a, Float8_ fb)
{
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint32_t h0_h0(uint16_t a)
{
uint32_t b;
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
return b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float fma(float a, float b, float c)
{
return a * b + c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(float2 a, float2 b, float2 c)
{
float2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(float a, float2 b, float2 c)
{
float2 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float4 fma(float4 a, float4 b, float4 c)
{
float4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float4 fma(float a, float4 b, float4 c)
{
float4 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c)
{
Float4_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c)
{
Float8_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ float2 add(__nv_bfloat162 a, float2 fb)
{
float2 fa = bf1622float2(a);
return add(fa, fb);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb)
{
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb)
{
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c)
{
uint32_t d;
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c)
{
return fma(h0_h0(a), b, c);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c)
{
uint2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c)
{
uint32_t s = h0_h0(a);
uint2 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c)
{
uint4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c)
{
uint32_t s = h0_h0(a);
uint4 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float fma(uint16_t a, uint16_t b, float fc)
{
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb + fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc)
{
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return fma(fa, fb, fc);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc)
{
return fma(h0_h0(a), b, fc);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc)
{
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc)
{
uint32_t s = h0_h0(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc)
{
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc)
{
uint32_t s = h0_h0(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c)
{
return bf16hfma2(a, b, c);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c)
{
return bf16hfma2(bf162bf162(a), b, c);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c)
{
bf16_4_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c)
{
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c)
{
bf16_8_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c)
{
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc)
{
return __bfloat162float(a) * __bfloat162float(b) + fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc)
{
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return fma(fa, fb, fc);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc)
{
return fma(bf162bf162(a), b, fc);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc)
{
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc)
{
__nv_bfloat162 s = bf162bf162(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc)
{
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc)
{
__nv_bfloat162 s = bf162bf162(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Acc, typename A, typename B>
inline __device__ Acc mul(A a, B b)
{
return a * b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float mul<float, float>(float a, float b)
{
return a * b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(float2 a, float2 b)
{
float2 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(float a, float2 b)
{
float2 c;
c.x = a * b.x;
c.y = a * b.y;
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float4 mul(float4 a, float4 b)
{
float4 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float4 mul(float a, float4 b)
{
float4 c;
c.x = a * b.x;
c.y = a * b.y;
c.z = a * b.z;
c.w = a * b.w;
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float8_ mul(float a, Float8_ b)
{
Float8_ c;
c.x = make_float2(a * b.x.x, a * b.x.y);
c.y = make_float2(a * b.y.x, a * b.y.y);
c.z = make_float2(a * b.z.x, a * b.z.y);
c.w = make_float2(a * b.w.x, a * b.w.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint16_t mul(uint16_t a, uint16_t b)
{
uint16_t c;
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint32_t mul(uint32_t a, uint32_t b)
{
uint32_t c;
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint32_t mul(uint16_t a, uint32_t b)
{
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint2 mul(uint2 a, uint2 b)
{
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint2 mul(uint16_t a, uint2 b)
{
uint32_t s = h0_h0(a);
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint4 mul(uint4 a, uint4 b)
{
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ uint4 mul(uint16_t a, uint4 b)
{
uint32_t s = h0_h0(a);
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float mul(uint16_t a, uint16_t b)
{
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float mul(uint16_t a, float b)
{
return half_to_float(a) * b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(uint32_t a, uint32_t b)
{
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return mul<float2, float2, float2>(fa, fb);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(uint16_t a, uint32_t b)
{
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float4_ mul(uint2 a, uint2 b)
{
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float4_ mul(uint16_t a, uint2 b)
{
uint32_t s = h0_h0(a);
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float8_ mul(uint4 a, uint4 b)
{
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float8_ mul(uint16_t a, uint4 b)
{
uint32_t s = h0_h0(a);
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
template<>
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
return __hmul(a, b);
#else
return bf16hmul(a, b);
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b)
{
return bf16hmul2(a, b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b)
{
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b)
{
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b)
{
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b)
{
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b)
{
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b)
{
float fa = (float)a;
float fb = (float)b;
return fa * fb;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float mul(__nv_bfloat16 a, float b)
{
return __bfloat162float(a) * b;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b)
{
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return mul<float2, float2, float2>(fa, fb);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b)
{
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b)
{
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b)
{
__nv_bfloat162 s = bf162bf162(a);
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b)
{
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return fc;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b)
{
__nv_bfloat162 s = bf162bf162(a);
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return fc;
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(float v)
{
return v;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(float2 v)
{
return v.x + v.y;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(float4 v)
{
return v.x + v.y + v.z + v.w;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_BF16
inline __device__ float sum(__nv_bfloat162 v)
{
float2 vf = bf1622float2(v);
return vf.x + vf.y;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(bf16_4_t v)
{
return sum(v.x) + sum(v.y);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(bf16_8_t v)
{
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
}
#endif // ENABLE_BF16
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(uint16_t v)
{
return half_to_float(v);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(uint32_t v)
{
float2 tmp = half2_to_float2(v);
return tmp.x + tmp.y;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(uint2 v)
{
uint32_t c = add(v.x, v.y);
return sum(c);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(uint4 v)
{
#if 1
uint32_t c = add(v.x, v.y);
c = add(c, v.z);
c = add(c, v.w);
#else
uint32_t c = add(v.x, v.y);
uint32_t d = add(v.z, v.w);
c = add(c, d);
#endif
return sum(c);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(Float4_ v)
{
return v.x.x + v.x.y + v.y.x + v.y.y;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float sum(Float8_ v)
{
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
inline __device__ float dot(T a, T b)
{
return sum(mul<T, T, T>(a, b));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename A, typename T>
inline __device__ float dot(T a, T b)
{
return sum(mul<A, T, T>(a, b));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ void zero(uint16_t& dst)
{
dst = uint16_t(0);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
inline __device__ void zero(T& dst)
{
constexpr int WORDS = sizeof(T) / 4;
union {
T raw;
uint32_t words[WORDS];
} tmp;
#pragma unroll
for (int ii = 0; ii < WORDS; ++ii) {
tmp.words[ii] = 0u;
}
dst = tmp.raw;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int rot_embed_dim, const int t_step, const float base)
{
const float pos_idx_inv_freq = t_step / pow(base, zid / (float)rot_embed_dim);
return {cos(pos_idx_inv_freq), sin(pos_idx_inv_freq)};
}
inline __device__ float2 rotary_embedding_transform(const float2 v, const float2 coef)
{
float2 rot_v;
rot_v.x = coef.x * v.x - coef.y * v.y;
rot_v.y = coef.x * v.y + coef.y * v.x;
return rot_v;
}
inline __device__ uint32_t rotary_embedding_transform(const uint32_t v, const float2 coef)
{
float2 fv = half2_to_float2(v);
float2 rot_fv = rotary_embedding_transform(fv, coef);
return float2_to_half2(rot_fv);
}
#ifdef ENABLE_BF16
inline __device__ __nv_bfloat162 rotary_embedding_transform(const __nv_bfloat162 v, const float2 coef)
{
float2 fv = bf1622float2(v);
float2 rot_fv = rotary_embedding_transform(fv, coef);
return __floats2bfloat162_rn(rot_fv.x, rot_fv.y);
}
#endif
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
return;
}
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
return;
}
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q_.x = rotary_embedding_transform(q_.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q_.y = rotary_embedding_transform(q_.y, coef1);
}
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
Float4_& k_ = *reinterpret_cast<Float4_*>(&k);
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q_.x = rotary_embedding_transform(q_.x, coef0);
k_.x = rotary_embedding_transform(k_.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q_.y = rotary_embedding_transform(q_.y, coef1);
k_.y = rotary_embedding_transform(k_.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
q.z = rotary_embedding_transform(q.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
q.w = rotary_embedding_transform(q.w, coef3);
}
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
q.z = rotary_embedding_transform(q.z, coef2);
k.z = rotary_embedding_transform(k.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
q.w = rotary_embedding_transform(q.w, coef3);
k.w = rotary_embedding_transform(k.w, coef3);
}
#ifdef ENABLE_BF16
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
}
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
}
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
q.z = rotary_embedding_transform(q.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
q.w = rotary_embedding_transform(q.w, coef3);
}
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
q.z = rotary_embedding_transform(q.z, coef2);
k.z = rotary_embedding_transform(k.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
q.w = rotary_embedding_transform(q.w, coef3);
k.w = rotary_embedding_transform(k.w, coef3);
}
#endif // ENABLE_BF16
template <typename T>
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int t_step, const T* rotary_cos, const T* rotary_sin)
{
// zid is the index of the dimension (0, 2, 4, ..., rotary_dim).
// rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2.
return {float(rotary_cos[zid / 2]), float(rotary_sin[zid / 2])};
}
// fp16 is special because we use uint16_t for reading the data, for backward compatibility.
template <>
inline __device__ float2 rotary_embedding_coefficient<uint16_t>(const int zid, const int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
// zid is the index of the dimension (0, 2, 4, ..., rotary_dim).
// rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2.
return {float(reinterpret_cast<const __half*>(rotary_cos)[zid / 2]),
float(reinterpret_cast<const __half*>(rotary_sin)[zid / 2])};
}
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
return;
}
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
return;
}
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q_.x = rotary_embedding_transform(q_.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q_.y = rotary_embedding_transform(q_.y, coef1);
}
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
Float4_& k_ = *reinterpret_cast<Float4_*>(&k);
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q_.x = rotary_embedding_transform(q_.x, coef0);
k_.x = rotary_embedding_transform(k_.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q_.y = rotary_embedding_transform(q_.y, coef1);
k_.y = rotary_embedding_transform(k_.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
}
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
q.z = rotary_embedding_transform(q.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
q.w = rotary_embedding_transform(q.w, coef3);
}
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
q.z = rotary_embedding_transform(q.z, coef2);
k.z = rotary_embedding_transform(k.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
q.w = rotary_embedding_transform(q.w, coef3);
k.w = rotary_embedding_transform(k.w, coef3);
}
#ifdef ENABLE_BF16
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
}
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (2 * tid >= rot_embed_dim) {
return;
}
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
q = rotary_embedding_transform(q, coef);
k = rotary_embedding_transform(k, coef);
}
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
}
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (4 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
}
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
q.z = rotary_embedding_transform(q.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
q.w = rotary_embedding_transform(q.w, coef3);
}
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
{
if (8 * tid >= rot_embed_dim) {
return;
}
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
q.x = rotary_embedding_transform(q.x, coef0);
k.x = rotary_embedding_transform(k.x, coef0);
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
q.y = rotary_embedding_transform(q.y, coef1);
k.y = rotary_embedding_transform(k.y, coef1);
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
q.z = rotary_embedding_transform(q.z, coef2);
k.z = rotary_embedding_transform(k.z, coef2);
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
q.w = rotary_embedding_transform(q.w, coef3);
k.w = rotary_embedding_transform(k.w, coef3);
}
#endif // ENABLE_BF16
template<typename Vec_T, typename T>
__device__ __inline__ void vec_from_smem_transpose(Vec_T& vec, T* smem, int transpose_idx, int smem_pitch);
template<>
__device__ __inline__ void vec_from_smem_transpose(float& vec, float* smem, int transpose_idx, int smem_pitch)
{
return;
}
template<>
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u16[0] = smem[transpose_idx];
tmp.u16[1] = smem[smem_pitch + transpose_idx];
vec = tmp.u32;
}
template<>
__device__ __inline__ void vec_from_smem_transpose(uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp_1, tmp_2;
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]);
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]);
union {
uint2 u32x2;
uint16_t u16[4];
} tmp_3;
tmp_3.u16[0] = tmp_1.u16[0];
tmp_3.u16[1] = tmp_2.u16[0];
tmp_3.u16[2] = tmp_1.u16[1];
tmp_3.u16[3] = tmp_2.u16[1];
vec = tmp_3.u32x2;
}
template<>
__device__ __inline__ void vec_from_smem_transpose(uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint64_t u64;
uint16_t u16[4];
} tmp_1, tmp_2;
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]);
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]);
union {
uint4 u32x4;
uint16_t u16[8];
} tmp_3;
tmp_3.u16[0] = tmp_1.u16[0];
tmp_3.u16[1] = tmp_2.u16[0];
tmp_3.u16[2] = tmp_1.u16[1];
tmp_3.u16[3] = tmp_2.u16[1];
tmp_3.u16[4] = tmp_1.u16[2];
tmp_3.u16[5] = tmp_2.u16[2];
tmp_3.u16[6] = tmp_1.u16[3];
tmp_3.u16[7] = tmp_2.u16[3];
vec = tmp_3.u32x4;
}
#ifdef ENABLE_BF16
template<>
__device__ __inline__ void
vec_from_smem_transpose(bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
__nv_bfloat16 bf16[2];
} tmp_1, tmp_2;
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]);
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]);
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]};
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]};
}
template<>
__device__ __inline__ void
vec_from_smem_transpose(bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
union {
uint64_t u64;
__nv_bfloat16 bf16[4];
} tmp_1, tmp_2;
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]);
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]);
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]};
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]};
vec.z = __nv_bfloat162{tmp_1.bf16[2], tmp_2.bf16[2]};
vec.w = __nv_bfloat162{tmp_1.bf16[3], tmp_2.bf16[3]};
}
#endif // ENABLE_BF16
template<>
__device__ __inline__ void vec_from_smem_transpose(float4& vec, float* smem, int transpose_idx, int smem_pitch)
{
vec.x = smem[transpose_idx];
vec.z = smem[transpose_idx + 1];
vec.y = smem[smem_pitch + transpose_idx];
vec.w = smem[smem_pitch + transpose_idx + 1];
}
template<>
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, half* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
half u16[2];
} tmp;
tmp.u16[0] = smem[transpose_idx];
tmp.u16[1] = smem[smem_pitch + transpose_idx];
vec = tmp.u32;
}
#ifdef ENABLE_BF16
template<>
__device__ __inline__ void
vec_from_smem_transpose(__nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
vec.x = smem[transpose_idx];
vec.y = smem[smem_pitch + transpose_idx];
}
#endif
template<>
__device__ __inline__ void vec_from_smem_transpose(float2& vec, float* smem, int transpose_idx, int smem_pitch)
{
vec.x = smem[transpose_idx];
vec.y = smem[smem_pitch + transpose_idx];
}
template<typename Vec_T, typename T>
__device__ __inline__ void write_smem_transpose(const Vec_T& vec, T* smem, int transpose_idx, int smem_pitch);
template<>
__device__ __inline__ void write_smem_transpose(const float& vec, float* smem, int transpose_idx, int smem_pitch)
{
return;
}
template<>
__device__ __inline__ void write_smem_transpose(const uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint64_t u64;
uint16_t u16[4];
} tmp_1, tmp_2;
union {
uint4 u32x4;
uint16_t u16[8];
} tmp_3;
tmp_3.u32x4 = vec;
tmp_1.u16[0] = tmp_3.u16[0];
tmp_2.u16[0] = tmp_3.u16[1];
tmp_1.u16[1] = tmp_3.u16[2];
tmp_2.u16[1] = tmp_3.u16[3];
tmp_1.u16[2] = tmp_3.u16[4];
tmp_2.u16[2] = tmp_3.u16[5];
tmp_1.u16[3] = tmp_3.u16[6];
tmp_2.u16[3] = tmp_3.u16[7];
*reinterpret_cast<uint64_t*>(&smem[transpose_idx]) = tmp_1.u64;
*reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u64;
}
template<>
__device__ __inline__ void write_smem_transpose(const uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp_1, tmp_2;
union {
uint2 u32x2;
uint16_t u16[4];
} tmp_3;
tmp_3.u32x2 = vec;
tmp_1.u16[0] = tmp_3.u16[0];
tmp_2.u16[0] = tmp_3.u16[1];
tmp_1.u16[1] = tmp_3.u16[2];
tmp_2.u16[1] = tmp_3.u16[3];
*reinterpret_cast<uint32_t*>(&smem[transpose_idx]) = tmp_1.u32;
*reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u32;
}
template<>
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u32 = vec;
smem[transpose_idx] = tmp.u16[0];
smem[smem_pitch + transpose_idx] = tmp.u16[1];
}
template<>
__device__ __inline__ void write_smem_transpose(const float4& vec, float* smem, int transpose_idx, int smem_pitch)
{
smem[transpose_idx] = vec.x;
smem[transpose_idx + 1] = vec.z;
smem[smem_pitch + transpose_idx] = vec.y;
smem[smem_pitch + transpose_idx + 1] = vec.w;
}
template<>
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, half* smem, int transpose_idx, int smem_pitch)
{
union {
uint32_t u32;
half u16[2];
} tmp;
tmp.u32 = vec;
smem[transpose_idx] = tmp.u16[0];
smem[smem_pitch + transpose_idx] = tmp.u16[1];
}
#ifdef ENABLE_BF16
template<>
__device__ __inline__ void
write_smem_transpose(const __nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
smem[transpose_idx] = vec.x;
smem[smem_pitch + transpose_idx] = vec.y;
}
template<>
__device__ __inline__ void
write_smem_transpose(const bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
write_smem_transpose(reinterpret_cast<const uint2&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch);
}
template<>
__device__ __inline__ void
write_smem_transpose(const bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
{
write_smem_transpose(reinterpret_cast<const uint4&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch);
}
#endif
template<>
__device__ __inline__ void write_smem_transpose(const float2& vec, float* smem, int transpose_idx, int smem_pitch)
{
smem[transpose_idx] = vec.x;
smem[smem_pitch + transpose_idx] = vec.y;
}
} // namespace mmha