File size: 15,053 Bytes
3f9c425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from functools import partial
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

import time

try:
    import cudnn
except ImportError:
    cudnn = None


from einops import rearrange, repeat

# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
from flash_attn.flash_attn_interface import flash_attn_func
from flash_attn_interface import flash_attn_func as flash_attn_func_v3, flash_attn_varlen_func as flash_attn_varlen_func_v3

# Need to install triton nightly:
# pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly

try:
    from triton_fused_attention import attention as triton_attention
except ImportError:
    triton_attention = None

def flops(batch, nheads, seqlen_q, seqlen_k, headdim, causal=False, mode='fwd'):
    assert mode in ["fwd", "bwd", "fwd_bwd"]
    f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
    return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)


def convert_to_cudnn_type(torch_type):
    if torch_type == torch.float16:
        return cudnn.data_type.HALF
    elif torch_type == torch.bfloat16:
        return cudnn.data_type.BFLOAT16
    elif torch_type == torch.float32:
        return cudnn.data_type.FLOAT
    elif torch_type == torch.int32:
        return cudnn.data_type.INT32
    elif torch_type == torch.int64:
        return cudnn.data_type.INT64
    else:
        raise ValueError("Unsupported tensor data type.")


def cudnn_sdpa_setup(q, k, v, grad, o, stats, causal=False, varlen=False, seqlens=None):
    b, nheads, seqlen_q, headdim = q.shape
    _, nheads_kv, seqlen_k, _ = k.shape
    assert v.shape == (b, nheads_kv, seqlen_k, headdim)
    assert cudnn is not None, 'CUDNN is not available'
    q_gpu, k_gpu, v_gpu = q, k, v
    o_gpu, stats_gpu = o, stats
    graph_forward = cudnn.pygraph(
        io_data_type=convert_to_cudnn_type(q.dtype),
        intermediate_data_type=cudnn.data_type.FLOAT,
        compute_data_type=cudnn.data_type.FLOAT,
    )
    q_forward = graph_forward.tensor_like(q_gpu.detach())
    k_forward = graph_forward.tensor_like(k_gpu.detach())
    v_forward = graph_forward.tensor_like(v_gpu.detach())

    seqlens_reshaped = seqlens if varlen else None
    seq_len_q = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None
    seq_len_kv = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None

    o_forward, stats_forward = graph_forward.sdpa(
        name="sdpa",
        q=q_forward,
        k=k_forward,
        v=v_forward,
        is_inference=False,
        attn_scale=1.0 / math.sqrt(headdim),
        use_causal_mask=causal,
        use_padding_mask=varlen,
        seq_len_q=seq_len_q,
        seq_len_kv=seq_len_kv,
    )

    o_forward.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride())
    stats_forward.set_output(True).set_data_type(cudnn.data_type.FLOAT)

    graph_forward.validate()
    graph_forward.build_operation_graph()
    graph_forward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK])
    graph_forward.check_support()
    graph_forward.build_plans()

    variant_pack_forward = {
        q_forward: q_gpu,
        k_forward: k_gpu,
        v_forward: v_gpu,
        o_forward: o_gpu,
        stats_forward: stats_gpu,
        seq_len_q: seqlens_reshaped,
        seq_len_kv: seqlens_reshaped,
    }

    dQ_gpu = torch.empty_like(q_gpu)
    dK_gpu = torch.empty_like(k_gpu)
    dV_gpu = torch.empty_like(v_gpu)
    dO_gpu = grad

    graph_backward = cudnn.pygraph(
        io_data_type=cudnn.data_type.HALF,
        intermediate_data_type=cudnn.data_type.FLOAT,
        compute_data_type=cudnn.data_type.FLOAT,
    )
    
    q_backward = graph_backward.tensor_like(q_gpu.detach())
    k_backward = graph_backward.tensor_like(k_gpu.detach())
    v_backward = graph_backward.tensor_like(v_gpu.detach())
    o_backward = graph_backward.tensor_like(o_gpu.detach())
    dO_backward = graph_backward.tensor_like(dO_gpu.detach())
    stats_backward = graph_backward.tensor_like(stats_gpu.detach())
    seq_len_q = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None
    seq_len_kv = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None
    
    dQ_backward, dK_backward, dV_backward = graph_backward.sdpa_backward(
        name="sdpa_backward",
        q=q_backward,
        k=k_backward,
        v=v_backward,
        o=o_backward,
        dO=dO_backward,
        stats=stats_backward,
        attn_scale=1.0 / math.sqrt(headdim),
        use_causal_mask=causal,
        use_padding_mask=varlen,
        seq_len_q=seq_len_q,
        seq_len_kv=seq_len_kv,
    )
    
    dQ_backward.set_output(True).set_dim(dQ_gpu.size()).set_stride(dQ_gpu.stride())
    dK_backward.set_output(True).set_dim(dK_gpu.size()).set_stride(dK_gpu.stride())
    dV_backward.set_output(True).set_dim(dV_gpu.size()).set_stride(dV_gpu.stride())
    
    graph_backward.validate()
    graph_backward.build_operation_graph()
    graph_backward.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK])
    graph_backward.check_support()
    graph_backward.build_plans()

    variant_pack_backward = {
        q_backward: q_gpu,
        k_backward: k_gpu,
        v_backward: v_gpu,
        o_backward: o_gpu,
        dO_backward: dO_gpu,
        stats_backward: stats_gpu,
        dQ_backward: dQ_gpu,
        dK_backward: dK_gpu,
        dV_backward: dV_gpu,
        seq_len_q: seqlens_reshaped,
        seq_len_kv: seqlens_reshaped,
    }

    workspace = torch.empty(
        max(graph_forward.get_workspace_size(), graph_backward.get_workspace_size()), 
        device="cuda", dtype=torch.uint8
    )

    def run_fwd(*args, **kwargs):
        graph_forward.execute(variant_pack_forward, workspace)
        return o_gpu, stats_gpu

    def run_bwd(*args, **kwargs):
        graph_backward.execute(variant_pack_backward, workspace)
        return dQ_gpu, dK_gpu, dV_gpu

    return run_fwd, run_bwd


torch.manual_seed(0)
repeats = 100
dropout_p = 0.0
causal = False
dtype = torch.float16
device = 'cuda'
verbose = False
batch_size = 2
# seqlen = 2048
seqlen = 8192
# seqlen = 4096
# seqlen = 2047
dim = 2048
# headdim = 128
# headdim = 64
headdim = 256

for mode in ['fwd', 'bwd']:
# for mode in ['bwd']:
    for headdim in [64, 128, 256]:
    # for headdim in [128]:
        for seqlen in [1024, 2048, 4096, 8192, 16384, 32768]:
        # for seqlen in [8192]:
            nheads = dim // headdim
            # nheads = 24
            # headdim = 64
            # batch_size = 64
            # seqlen = 512
            # nheads = 8
            # headdim = 128
            # nheads = 16
            # headdim = 128
            nheads_kv = nheads
            # nheads_kv = 1
    
            qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
                            requires_grad=True)
            q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
            k = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype, requires_grad=True)
            v = torch.randn(batch_size, seqlen, nheads_kv, headdim, device=device, dtype=dtype, requires_grad=True)
            q_t = q.transpose(1, 2).contiguous().detach().requires_grad_()
            k_t = k.transpose(1, 2).contiguous().detach().requires_grad_()
            v_t = k.transpose(1, 2).contiguous().detach().requires_grad_()
            grad = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype)
            grad_t = grad.transpose(1, 2).contiguous()
            o_t = torch.empty_like(q.transpose(1, 2))
            stats = torch.empty(batch_size, nheads, seqlen, 1, dtype=torch.float32, device=q.device)
    
            bench_fn = benchmark_forward if mode == 'fwd' else partial(benchmark_backward, grad=grad)

            for causal in [False, True]:
            # for causal in [True]:
                print(f"\n### {mode = }, {batch_size = }, {headdim = }, {seqlen = }, {causal = } ###")
                # For var-seq-len
                lens = torch.full([q.shape[0]], seqlen, dtype=torch.int32)
                seqlens_cudnn = lens.reshape(batch_size, 1, 1, 1).contiguous().cuda()
                cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), torch.cumsum(lens, dim=0, dtype=torch.int32)]).cuda()
                if headdim <= 128 and cudnn is not None:
                    cudnn_sdpa_fwd, cudnn_sdpa_bwd = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), o_t, stats, causal=causal)
                    cudnn_sdpa_fwd_varlen, cudnn_sdpa_bwd_varlen = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), o_t, stats, causal=causal, varlen=True, seqlens=seqlens_cudnn)
                f = flops(batch_size, nheads, seqlen, seqlen, headdim, causal=causal, mode=mode)
                ref_o = flash_attn_func(q, k, v, dropout_p, causal=causal)
                _, m0 = bench_fn(flash_attn_func, q, k, v, dropout_p, causal=causal, repeats=repeats, verbose=verbose, desc='Fav2')
                if mode == 'bwd':
                    ref_dv, v.grad = v.grad.clone(), None
                    ref_dk, k.grad = k.grad.clone(), None
                    ref_dq, q.grad = q.grad.clone(), None
                # pytorch_profiler(flash_attn_func, q, k, v, dropout_p, causal=causal, backward=False)
                if headdim <= 128:
                    if triton_attention is not None and nheads_kv == nheads:
                        if mode == 'fwd':
                            time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
                            _, m3 = benchmark_forward(triton_attention, q_t, k_t, v_t, causal, 1 / math.sqrt(headdim), repeats=repeats, verbose=verbose, desc='Triton')
                        # TODO: fix Triton numeric errors.
                        # if mode == 'bwd':
                        #     dv, v_t.grad = v_t.grad.clone(), None
                        #     dk, k_t.grad = k_t.grad.clone(), None
                        #     dq, q_t.grad = q_t.grad.clone(), None
                        #     torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05)
                        #     torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05)
                        #     torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05)
                    if cudnn is not None:
                        time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
                        if mode == 'fwd':
                            _, m2 = benchmark_forward(cudnn_sdpa_fwd, repeats=repeats, verbose=verbose, desc='CuDNN')
                            _, m2_var = benchmark_forward(cudnn_sdpa_fwd_varlen, repeats=repeats, verbose=verbose, desc='CuDNN')
                            cudnn_sdpa_fwd()
                            torch.testing.assert_close(ref_o, o_t.transpose(1, 2), atol=0.05, rtol=0.05)
                            cudnn_sdpa_fwd_varlen()
                            torch.testing.assert_close(ref_o, o_t.transpose(1, 2), atol=0.05, rtol=0.05)
                        else:
                            cudnn_sdpa_fwd()
                            _, m2 = benchmark_forward(cudnn_sdpa_bwd, repeats=repeats, verbose=verbose, desc='CuDNN')
                            _, m2_var = benchmark_forward(cudnn_sdpa_bwd_varlen, repeats=repeats, verbose=verbose, desc='CuDNN')
                            dq, dk, dv = cudnn_sdpa_bwd()
                            torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05)
                            torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05)
                            torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05)
                            dq, dk, dv = cudnn_sdpa_bwd_varlen()
                            torch.testing.assert_close(ref_dv, dv.transpose(1, 2), atol=0.05, rtol=0.05)
                            torch.testing.assert_close(ref_dk, dk.transpose(1, 2), atol=0.05, rtol=0.05)
                            torch.testing.assert_close(ref_dq, dq.transpose(1, 2), atol=0.05, rtol=0.05)
                        # pytorch_profiler(cudnn_sdpa, backward=False)

                if headdim <= 128 or mode == 'fwd':
                    time.sleep(1)
                    _, m1 = bench_fn(flash_attn_func_v3, q, k, v, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3')
                    q_var = q.reshape(-1, q.shape[-2], q.shape[-1])
                    k_var = k.reshape(-1, k.shape[-2], k.shape[-1])
                    v_var = v.reshape(-1, v.shape[-2], v.shape[-1])
                    time.sleep(1)
                    if mode == 'bwd':
                        dv, v.grad = v.grad.clone(), None
                        dk, k.grad = k.grad.clone(), None
                        dq, q.grad = q.grad.clone(), None
                        torch.testing.assert_close(ref_dv, dv, atol=0.05, rtol=0.05)
                        torch.testing.assert_close(ref_dk, dk, atol=0.05, rtol=0.05)
                        torch.testing.assert_close(ref_dq, dq, atol=0.05, rtol=0.05)
 
                    bench_var_fn = bench_fn
                    if mode == 'bwd':
                        grad_var = grad.reshape(-1, grad.shape[-2], grad.shape[-1])
                        bench_var_fn = partial(benchmark_backward, grad=grad_var)
                    _, m1_var = bench_var_fn(flash_attn_varlen_func_v3, q_var, k_var, v_var, cu_seqlens, cu_seqlens, seqlen, seqlen, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3 var len')

                # pytorch_profiler(flash_attn_func_v3, q, k, v, causal=causal, backward=False)
                print(f'Fav2: {m0.mean * 1e3:.3f}ms, {(f / m0.mean * 1e-12):.1f} TFLOPS')
                if headdim <= 128:
                    if mode == 'fwd' and triton_attention is not None and nheads_kv == nheads:
                        print(f'Triton: {m3.mean * 1e3:.3f}ms, {(f / m3.mean * 1e-12):.1f} TFLOPS')
                    if cudnn is not None:
                        print(f'CuDNN: {m2.mean * 1e3:.3f}ms, {(f / m2.mean * 1e-12):.1f} TFLOPS')
                        print(f'CuDNN varlen: {m2_var.mean * 1e3:.3f}ms, {(f / m2_var.mean * 1e-12):.1f} TFLOPS')
                if headdim <= 128 or mode == 'fwd':
                    print(f'Fav3: {m1.mean * 1e3:.3f}ms, {(f / m1.mean * 1e-12):.1f} TFLOPS')
                    print(f'Fav3 varlen: {m1_var.mean * 1e3:.3f}ms, {(f / m1_var.mean * 1e-12):.1f} TFLOPS')