Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1147 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-similarity
|
5 |
+
- sentence-transformers
|
6 |
+
- Sentence Transformers
|
7 |
+
model-index:
|
8 |
+
- name: gte-base-zh
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: STS
|
12 |
+
dataset:
|
13 |
+
type: C-MTEB/AFQMC
|
14 |
+
name: MTEB AFQMC
|
15 |
+
config: default
|
16 |
+
split: validation
|
17 |
+
revision: None
|
18 |
+
metrics:
|
19 |
+
- type: cos_sim_pearson
|
20 |
+
value: 44.45621572456527
|
21 |
+
- type: cos_sim_spearman
|
22 |
+
value: 49.06500895667604
|
23 |
+
- type: euclidean_pearson
|
24 |
+
value: 47.55002064096053
|
25 |
+
- type: euclidean_spearman
|
26 |
+
value: 49.06500895667604
|
27 |
+
- type: manhattan_pearson
|
28 |
+
value: 47.429900262366715
|
29 |
+
- type: manhattan_spearman
|
30 |
+
value: 48.95704890278774
|
31 |
+
- task:
|
32 |
+
type: STS
|
33 |
+
dataset:
|
34 |
+
type: C-MTEB/ATEC
|
35 |
+
name: MTEB ATEC
|
36 |
+
config: default
|
37 |
+
split: test
|
38 |
+
revision: None
|
39 |
+
metrics:
|
40 |
+
- type: cos_sim_pearson
|
41 |
+
value: 44.31699346653116
|
42 |
+
- type: cos_sim_spearman
|
43 |
+
value: 50.83133156721432
|
44 |
+
- type: euclidean_pearson
|
45 |
+
value: 51.36086517946001
|
46 |
+
- type: euclidean_spearman
|
47 |
+
value: 50.83132818894256
|
48 |
+
- type: manhattan_pearson
|
49 |
+
value: 51.255926461574084
|
50 |
+
- type: manhattan_spearman
|
51 |
+
value: 50.73460147395406
|
52 |
+
- task:
|
53 |
+
type: Classification
|
54 |
+
dataset:
|
55 |
+
type: mteb/amazon_reviews_multi
|
56 |
+
name: MTEB AmazonReviewsClassification (zh)
|
57 |
+
config: zh
|
58 |
+
split: test
|
59 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
60 |
+
metrics:
|
61 |
+
- type: accuracy
|
62 |
+
value: 45.818000000000005
|
63 |
+
- type: f1
|
64 |
+
value: 43.998253644678144
|
65 |
+
- task:
|
66 |
+
type: STS
|
67 |
+
dataset:
|
68 |
+
type: C-MTEB/BQ
|
69 |
+
name: MTEB BQ
|
70 |
+
config: default
|
71 |
+
split: test
|
72 |
+
revision: None
|
73 |
+
metrics:
|
74 |
+
- type: cos_sim_pearson
|
75 |
+
value: 63.47477451918581
|
76 |
+
- type: cos_sim_spearman
|
77 |
+
value: 65.49832607366159
|
78 |
+
- type: euclidean_pearson
|
79 |
+
value: 64.11399760832107
|
80 |
+
- type: euclidean_spearman
|
81 |
+
value: 65.49832260877398
|
82 |
+
- type: manhattan_pearson
|
83 |
+
value: 64.02541311484639
|
84 |
+
- type: manhattan_spearman
|
85 |
+
value: 65.42436057501452
|
86 |
+
- task:
|
87 |
+
type: Clustering
|
88 |
+
dataset:
|
89 |
+
type: C-MTEB/CLSClusteringP2P
|
90 |
+
name: MTEB CLSClusteringP2P
|
91 |
+
config: default
|
92 |
+
split: test
|
93 |
+
revision: None
|
94 |
+
metrics:
|
95 |
+
- type: v_measure
|
96 |
+
value: 42.58046835435111
|
97 |
+
- task:
|
98 |
+
type: Clustering
|
99 |
+
dataset:
|
100 |
+
type: C-MTEB/CLSClusteringS2S
|
101 |
+
name: MTEB CLSClusteringS2S
|
102 |
+
config: default
|
103 |
+
split: test
|
104 |
+
revision: None
|
105 |
+
metrics:
|
106 |
+
- type: v_measure
|
107 |
+
value: 40.42134173217685
|
108 |
+
- task:
|
109 |
+
type: Reranking
|
110 |
+
dataset:
|
111 |
+
type: C-MTEB/CMedQAv1-reranking
|
112 |
+
name: MTEB CMedQAv1
|
113 |
+
config: default
|
114 |
+
split: test
|
115 |
+
revision: None
|
116 |
+
metrics:
|
117 |
+
- type: map
|
118 |
+
value: 86.79079943923792
|
119 |
+
- type: mrr
|
120 |
+
value: 88.81341269841269
|
121 |
+
- task:
|
122 |
+
type: Reranking
|
123 |
+
dataset:
|
124 |
+
type: C-MTEB/CMedQAv2-reranking
|
125 |
+
name: MTEB CMedQAv2
|
126 |
+
config: default
|
127 |
+
split: test
|
128 |
+
revision: None
|
129 |
+
metrics:
|
130 |
+
- type: map
|
131 |
+
value: 87.20186031249037
|
132 |
+
- type: mrr
|
133 |
+
value: 89.46551587301587
|
134 |
+
- task:
|
135 |
+
type: Retrieval
|
136 |
+
dataset:
|
137 |
+
type: C-MTEB/CmedqaRetrieval
|
138 |
+
name: MTEB CmedqaRetrieval
|
139 |
+
config: default
|
140 |
+
split: dev
|
141 |
+
revision: None
|
142 |
+
metrics:
|
143 |
+
- type: map_at_1
|
144 |
+
value: 25.098
|
145 |
+
- type: map_at_10
|
146 |
+
value: 37.759
|
147 |
+
- type: map_at_100
|
148 |
+
value: 39.693
|
149 |
+
- type: map_at_1000
|
150 |
+
value: 39.804
|
151 |
+
- type: map_at_3
|
152 |
+
value: 33.477000000000004
|
153 |
+
- type: map_at_5
|
154 |
+
value: 35.839
|
155 |
+
- type: mrr_at_1
|
156 |
+
value: 38.06
|
157 |
+
- type: mrr_at_10
|
158 |
+
value: 46.302
|
159 |
+
- type: mrr_at_100
|
160 |
+
value: 47.370000000000005
|
161 |
+
- type: mrr_at_1000
|
162 |
+
value: 47.412
|
163 |
+
- type: mrr_at_3
|
164 |
+
value: 43.702999999999996
|
165 |
+
- type: mrr_at_5
|
166 |
+
value: 45.213
|
167 |
+
- type: ndcg_at_1
|
168 |
+
value: 38.06
|
169 |
+
- type: ndcg_at_10
|
170 |
+
value: 44.375
|
171 |
+
- type: ndcg_at_100
|
172 |
+
value: 51.849999999999994
|
173 |
+
- type: ndcg_at_1000
|
174 |
+
value: 53.725
|
175 |
+
- type: ndcg_at_3
|
176 |
+
value: 38.97
|
177 |
+
- type: ndcg_at_5
|
178 |
+
value: 41.193000000000005
|
179 |
+
- type: precision_at_1
|
180 |
+
value: 38.06
|
181 |
+
- type: precision_at_10
|
182 |
+
value: 9.934999999999999
|
183 |
+
- type: precision_at_100
|
184 |
+
value: 1.599
|
185 |
+
- type: precision_at_1000
|
186 |
+
value: 0.183
|
187 |
+
- type: precision_at_3
|
188 |
+
value: 22.072
|
189 |
+
- type: precision_at_5
|
190 |
+
value: 16.089000000000002
|
191 |
+
- type: recall_at_1
|
192 |
+
value: 25.098
|
193 |
+
- type: recall_at_10
|
194 |
+
value: 55.264
|
195 |
+
- type: recall_at_100
|
196 |
+
value: 85.939
|
197 |
+
- type: recall_at_1000
|
198 |
+
value: 98.44800000000001
|
199 |
+
- type: recall_at_3
|
200 |
+
value: 39.122
|
201 |
+
- type: recall_at_5
|
202 |
+
value: 45.948
|
203 |
+
- task:
|
204 |
+
type: PairClassification
|
205 |
+
dataset:
|
206 |
+
type: C-MTEB/CMNLI
|
207 |
+
name: MTEB Cmnli
|
208 |
+
config: default
|
209 |
+
split: validation
|
210 |
+
revision: None
|
211 |
+
metrics:
|
212 |
+
- type: cos_sim_accuracy
|
213 |
+
value: 78.02766085387853
|
214 |
+
- type: cos_sim_ap
|
215 |
+
value: 85.59982802559004
|
216 |
+
- type: cos_sim_f1
|
217 |
+
value: 79.57103418984921
|
218 |
+
- type: cos_sim_precision
|
219 |
+
value: 72.88465279128575
|
220 |
+
- type: cos_sim_recall
|
221 |
+
value: 87.60813654430676
|
222 |
+
- type: dot_accuracy
|
223 |
+
value: 78.02766085387853
|
224 |
+
- type: dot_ap
|
225 |
+
value: 85.59604477360719
|
226 |
+
- type: dot_f1
|
227 |
+
value: 79.57103418984921
|
228 |
+
- type: dot_precision
|
229 |
+
value: 72.88465279128575
|
230 |
+
- type: dot_recall
|
231 |
+
value: 87.60813654430676
|
232 |
+
- type: euclidean_accuracy
|
233 |
+
value: 78.02766085387853
|
234 |
+
- type: euclidean_ap
|
235 |
+
value: 85.59982802559004
|
236 |
+
- type: euclidean_f1
|
237 |
+
value: 79.57103418984921
|
238 |
+
- type: euclidean_precision
|
239 |
+
value: 72.88465279128575
|
240 |
+
- type: euclidean_recall
|
241 |
+
value: 87.60813654430676
|
242 |
+
- type: manhattan_accuracy
|
243 |
+
value: 77.9795550210463
|
244 |
+
- type: manhattan_ap
|
245 |
+
value: 85.58042267497707
|
246 |
+
- type: manhattan_f1
|
247 |
+
value: 79.40344001741781
|
248 |
+
- type: manhattan_precision
|
249 |
+
value: 74.29211652067632
|
250 |
+
- type: manhattan_recall
|
251 |
+
value: 85.27004909983633
|
252 |
+
- type: max_accuracy
|
253 |
+
value: 78.02766085387853
|
254 |
+
- type: max_ap
|
255 |
+
value: 85.59982802559004
|
256 |
+
- type: max_f1
|
257 |
+
value: 79.57103418984921
|
258 |
+
- task:
|
259 |
+
type: Retrieval
|
260 |
+
dataset:
|
261 |
+
type: C-MTEB/CovidRetrieval
|
262 |
+
name: MTEB CovidRetrieval
|
263 |
+
config: default
|
264 |
+
split: dev
|
265 |
+
revision: None
|
266 |
+
metrics:
|
267 |
+
- type: map_at_1
|
268 |
+
value: 62.144
|
269 |
+
- type: map_at_10
|
270 |
+
value: 71.589
|
271 |
+
- type: map_at_100
|
272 |
+
value: 72.066
|
273 |
+
- type: map_at_1000
|
274 |
+
value: 72.075
|
275 |
+
- type: map_at_3
|
276 |
+
value: 69.916
|
277 |
+
- type: map_at_5
|
278 |
+
value: 70.806
|
279 |
+
- type: mrr_at_1
|
280 |
+
value: 62.275999999999996
|
281 |
+
- type: mrr_at_10
|
282 |
+
value: 71.57
|
283 |
+
- type: mrr_at_100
|
284 |
+
value: 72.048
|
285 |
+
- type: mrr_at_1000
|
286 |
+
value: 72.057
|
287 |
+
- type: mrr_at_3
|
288 |
+
value: 69.89800000000001
|
289 |
+
- type: mrr_at_5
|
290 |
+
value: 70.84700000000001
|
291 |
+
- type: ndcg_at_1
|
292 |
+
value: 62.381
|
293 |
+
- type: ndcg_at_10
|
294 |
+
value: 75.74
|
295 |
+
- type: ndcg_at_100
|
296 |
+
value: 77.827
|
297 |
+
- type: ndcg_at_1000
|
298 |
+
value: 78.044
|
299 |
+
- type: ndcg_at_3
|
300 |
+
value: 72.307
|
301 |
+
- type: ndcg_at_5
|
302 |
+
value: 73.91499999999999
|
303 |
+
- type: precision_at_1
|
304 |
+
value: 62.381
|
305 |
+
- type: precision_at_10
|
306 |
+
value: 8.946
|
307 |
+
- type: precision_at_100
|
308 |
+
value: 0.988
|
309 |
+
- type: precision_at_1000
|
310 |
+
value: 0.101
|
311 |
+
- type: precision_at_3
|
312 |
+
value: 26.554
|
313 |
+
- type: precision_at_5
|
314 |
+
value: 16.733
|
315 |
+
- type: recall_at_1
|
316 |
+
value: 62.144
|
317 |
+
- type: recall_at_10
|
318 |
+
value: 88.567
|
319 |
+
- type: recall_at_100
|
320 |
+
value: 97.84
|
321 |
+
- type: recall_at_1000
|
322 |
+
value: 99.473
|
323 |
+
- type: recall_at_3
|
324 |
+
value: 79.083
|
325 |
+
- type: recall_at_5
|
326 |
+
value: 83.035
|
327 |
+
- task:
|
328 |
+
type: Retrieval
|
329 |
+
dataset:
|
330 |
+
type: C-MTEB/DuRetrieval
|
331 |
+
name: MTEB DuRetrieval
|
332 |
+
config: default
|
333 |
+
split: dev
|
334 |
+
revision: None
|
335 |
+
metrics:
|
336 |
+
- type: map_at_1
|
337 |
+
value: 24.665
|
338 |
+
- type: map_at_10
|
339 |
+
value: 74.91600000000001
|
340 |
+
- type: map_at_100
|
341 |
+
value: 77.981
|
342 |
+
- type: map_at_1000
|
343 |
+
value: 78.032
|
344 |
+
- type: map_at_3
|
345 |
+
value: 51.015
|
346 |
+
- type: map_at_5
|
347 |
+
value: 64.681
|
348 |
+
- type: mrr_at_1
|
349 |
+
value: 86.5
|
350 |
+
- type: mrr_at_10
|
351 |
+
value: 90.78399999999999
|
352 |
+
- type: mrr_at_100
|
353 |
+
value: 90.859
|
354 |
+
- type: mrr_at_1000
|
355 |
+
value: 90.863
|
356 |
+
- type: mrr_at_3
|
357 |
+
value: 90.375
|
358 |
+
- type: mrr_at_5
|
359 |
+
value: 90.66199999999999
|
360 |
+
- type: ndcg_at_1
|
361 |
+
value: 86.5
|
362 |
+
- type: ndcg_at_10
|
363 |
+
value: 83.635
|
364 |
+
- type: ndcg_at_100
|
365 |
+
value: 86.926
|
366 |
+
- type: ndcg_at_1000
|
367 |
+
value: 87.425
|
368 |
+
- type: ndcg_at_3
|
369 |
+
value: 81.28999999999999
|
370 |
+
- type: ndcg_at_5
|
371 |
+
value: 80.549
|
372 |
+
- type: precision_at_1
|
373 |
+
value: 86.5
|
374 |
+
- type: precision_at_10
|
375 |
+
value: 40.544999999999995
|
376 |
+
- type: precision_at_100
|
377 |
+
value: 4.748
|
378 |
+
- type: precision_at_1000
|
379 |
+
value: 0.48700000000000004
|
380 |
+
- type: precision_at_3
|
381 |
+
value: 72.68299999999999
|
382 |
+
- type: precision_at_5
|
383 |
+
value: 61.86000000000001
|
384 |
+
- type: recall_at_1
|
385 |
+
value: 24.665
|
386 |
+
- type: recall_at_10
|
387 |
+
value: 85.72
|
388 |
+
- type: recall_at_100
|
389 |
+
value: 96.116
|
390 |
+
- type: recall_at_1000
|
391 |
+
value: 98.772
|
392 |
+
- type: recall_at_3
|
393 |
+
value: 53.705999999999996
|
394 |
+
- type: recall_at_5
|
395 |
+
value: 70.42699999999999
|
396 |
+
- task:
|
397 |
+
type: Retrieval
|
398 |
+
dataset:
|
399 |
+
type: C-MTEB/EcomRetrieval
|
400 |
+
name: MTEB EcomRetrieval
|
401 |
+
config: default
|
402 |
+
split: dev
|
403 |
+
revision: None
|
404 |
+
metrics:
|
405 |
+
- type: map_at_1
|
406 |
+
value: 54.0
|
407 |
+
- type: map_at_10
|
408 |
+
value: 64.449
|
409 |
+
- type: map_at_100
|
410 |
+
value: 64.937
|
411 |
+
- type: map_at_1000
|
412 |
+
value: 64.946
|
413 |
+
- type: map_at_3
|
414 |
+
value: 61.85000000000001
|
415 |
+
- type: map_at_5
|
416 |
+
value: 63.525
|
417 |
+
- type: mrr_at_1
|
418 |
+
value: 54.0
|
419 |
+
- type: mrr_at_10
|
420 |
+
value: 64.449
|
421 |
+
- type: mrr_at_100
|
422 |
+
value: 64.937
|
423 |
+
- type: mrr_at_1000
|
424 |
+
value: 64.946
|
425 |
+
- type: mrr_at_3
|
426 |
+
value: 61.85000000000001
|
427 |
+
- type: mrr_at_5
|
428 |
+
value: 63.525
|
429 |
+
- type: ndcg_at_1
|
430 |
+
value: 54.0
|
431 |
+
- type: ndcg_at_10
|
432 |
+
value: 69.56400000000001
|
433 |
+
- type: ndcg_at_100
|
434 |
+
value: 71.78999999999999
|
435 |
+
- type: ndcg_at_1000
|
436 |
+
value: 72.021
|
437 |
+
- type: ndcg_at_3
|
438 |
+
value: 64.334
|
439 |
+
- type: ndcg_at_5
|
440 |
+
value: 67.368
|
441 |
+
- type: precision_at_1
|
442 |
+
value: 54.0
|
443 |
+
- type: precision_at_10
|
444 |
+
value: 8.559999999999999
|
445 |
+
- type: precision_at_100
|
446 |
+
value: 0.9570000000000001
|
447 |
+
- type: precision_at_1000
|
448 |
+
value: 0.098
|
449 |
+
- type: precision_at_3
|
450 |
+
value: 23.833
|
451 |
+
- type: precision_at_5
|
452 |
+
value: 15.78
|
453 |
+
- type: recall_at_1
|
454 |
+
value: 54.0
|
455 |
+
- type: recall_at_10
|
456 |
+
value: 85.6
|
457 |
+
- type: recall_at_100
|
458 |
+
value: 95.7
|
459 |
+
- type: recall_at_1000
|
460 |
+
value: 97.5
|
461 |
+
- type: recall_at_3
|
462 |
+
value: 71.5
|
463 |
+
- type: recall_at_5
|
464 |
+
value: 78.9
|
465 |
+
- task:
|
466 |
+
type: Classification
|
467 |
+
dataset:
|
468 |
+
type: C-MTEB/IFlyTek-classification
|
469 |
+
name: MTEB IFlyTek
|
470 |
+
config: default
|
471 |
+
split: validation
|
472 |
+
revision: None
|
473 |
+
metrics:
|
474 |
+
- type: accuracy
|
475 |
+
value: 48.61869949980762
|
476 |
+
- type: f1
|
477 |
+
value: 36.49337336098832
|
478 |
+
- task:
|
479 |
+
type: Classification
|
480 |
+
dataset:
|
481 |
+
type: C-MTEB/JDReview-classification
|
482 |
+
name: MTEB JDReview
|
483 |
+
config: default
|
484 |
+
split: test
|
485 |
+
revision: None
|
486 |
+
metrics:
|
487 |
+
- type: accuracy
|
488 |
+
value: 85.94746716697938
|
489 |
+
- type: ap
|
490 |
+
value: 53.75927589310753
|
491 |
+
- type: f1
|
492 |
+
value: 80.53821597736138
|
493 |
+
- task:
|
494 |
+
type: STS
|
495 |
+
dataset:
|
496 |
+
type: C-MTEB/LCQMC
|
497 |
+
name: MTEB LCQMC
|
498 |
+
config: default
|
499 |
+
split: test
|
500 |
+
revision: None
|
501 |
+
metrics:
|
502 |
+
- type: cos_sim_pearson
|
503 |
+
value: 68.77445518082875
|
504 |
+
- type: cos_sim_spearman
|
505 |
+
value: 74.05909185405268
|
506 |
+
- type: euclidean_pearson
|
507 |
+
value: 72.92870557009725
|
508 |
+
- type: euclidean_spearman
|
509 |
+
value: 74.05909628639644
|
510 |
+
- type: manhattan_pearson
|
511 |
+
value: 72.92072580598351
|
512 |
+
- type: manhattan_spearman
|
513 |
+
value: 74.0304390211741
|
514 |
+
- task:
|
515 |
+
type: Reranking
|
516 |
+
dataset:
|
517 |
+
type: C-MTEB/Mmarco-reranking
|
518 |
+
name: MTEB MMarcoReranking
|
519 |
+
config: default
|
520 |
+
split: dev
|
521 |
+
revision: None
|
522 |
+
metrics:
|
523 |
+
- type: map
|
524 |
+
value: 27.643607073221975
|
525 |
+
- type: mrr
|
526 |
+
value: 26.646825396825395
|
527 |
+
- task:
|
528 |
+
type: Retrieval
|
529 |
+
dataset:
|
530 |
+
type: C-MTEB/MMarcoRetrieval
|
531 |
+
name: MTEB MMarcoRetrieval
|
532 |
+
config: default
|
533 |
+
split: dev
|
534 |
+
revision: None
|
535 |
+
metrics:
|
536 |
+
- type: map_at_1
|
537 |
+
value: 65.10000000000001
|
538 |
+
- type: map_at_10
|
539 |
+
value: 74.014
|
540 |
+
- type: map_at_100
|
541 |
+
value: 74.372
|
542 |
+
- type: map_at_1000
|
543 |
+
value: 74.385
|
544 |
+
- type: map_at_3
|
545 |
+
value: 72.179
|
546 |
+
- type: map_at_5
|
547 |
+
value: 73.37700000000001
|
548 |
+
- type: mrr_at_1
|
549 |
+
value: 67.364
|
550 |
+
- type: mrr_at_10
|
551 |
+
value: 74.68
|
552 |
+
- type: mrr_at_100
|
553 |
+
value: 74.992
|
554 |
+
- type: mrr_at_1000
|
555 |
+
value: 75.003
|
556 |
+
- type: mrr_at_3
|
557 |
+
value: 73.054
|
558 |
+
- type: mrr_at_5
|
559 |
+
value: 74.126
|
560 |
+
- type: ndcg_at_1
|
561 |
+
value: 67.364
|
562 |
+
- type: ndcg_at_10
|
563 |
+
value: 77.704
|
564 |
+
- type: ndcg_at_100
|
565 |
+
value: 79.29899999999999
|
566 |
+
- type: ndcg_at_1000
|
567 |
+
value: 79.637
|
568 |
+
- type: ndcg_at_3
|
569 |
+
value: 74.232
|
570 |
+
- type: ndcg_at_5
|
571 |
+
value: 76.264
|
572 |
+
- type: precision_at_1
|
573 |
+
value: 67.364
|
574 |
+
- type: precision_at_10
|
575 |
+
value: 9.397
|
576 |
+
- type: precision_at_100
|
577 |
+
value: 1.019
|
578 |
+
- type: precision_at_1000
|
579 |
+
value: 0.105
|
580 |
+
- type: precision_at_3
|
581 |
+
value: 27.942
|
582 |
+
- type: precision_at_5
|
583 |
+
value: 17.837
|
584 |
+
- type: recall_at_1
|
585 |
+
value: 65.10000000000001
|
586 |
+
- type: recall_at_10
|
587 |
+
value: 88.416
|
588 |
+
- type: recall_at_100
|
589 |
+
value: 95.61
|
590 |
+
- type: recall_at_1000
|
591 |
+
value: 98.261
|
592 |
+
- type: recall_at_3
|
593 |
+
value: 79.28
|
594 |
+
- type: recall_at_5
|
595 |
+
value: 84.108
|
596 |
+
- task:
|
597 |
+
type: Classification
|
598 |
+
dataset:
|
599 |
+
type: mteb/amazon_massive_intent
|
600 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
601 |
+
config: zh-CN
|
602 |
+
split: test
|
603 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
604 |
+
metrics:
|
605 |
+
- type: accuracy
|
606 |
+
value: 73.315400134499
|
607 |
+
- type: f1
|
608 |
+
value: 70.81060697693198
|
609 |
+
- task:
|
610 |
+
type: Classification
|
611 |
+
dataset:
|
612 |
+
type: mteb/amazon_massive_scenario
|
613 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
614 |
+
config: zh-CN
|
615 |
+
split: test
|
616 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
617 |
+
metrics:
|
618 |
+
- type: accuracy
|
619 |
+
value: 76.78883658372563
|
620 |
+
- type: f1
|
621 |
+
value: 76.21512438791976
|
622 |
+
- task:
|
623 |
+
type: Retrieval
|
624 |
+
dataset:
|
625 |
+
type: C-MTEB/MedicalRetrieval
|
626 |
+
name: MTEB MedicalRetrieval
|
627 |
+
config: default
|
628 |
+
split: dev
|
629 |
+
revision: None
|
630 |
+
metrics:
|
631 |
+
- type: map_at_1
|
632 |
+
value: 55.300000000000004
|
633 |
+
- type: map_at_10
|
634 |
+
value: 61.879
|
635 |
+
- type: map_at_100
|
636 |
+
value: 62.434
|
637 |
+
- type: map_at_1000
|
638 |
+
value: 62.476
|
639 |
+
- type: map_at_3
|
640 |
+
value: 60.417
|
641 |
+
- type: map_at_5
|
642 |
+
value: 61.297000000000004
|
643 |
+
- type: mrr_at_1
|
644 |
+
value: 55.400000000000006
|
645 |
+
- type: mrr_at_10
|
646 |
+
value: 61.92100000000001
|
647 |
+
- type: mrr_at_100
|
648 |
+
value: 62.476
|
649 |
+
- type: mrr_at_1000
|
650 |
+
value: 62.517999999999994
|
651 |
+
- type: mrr_at_3
|
652 |
+
value: 60.483
|
653 |
+
- type: mrr_at_5
|
654 |
+
value: 61.338
|
655 |
+
- type: ndcg_at_1
|
656 |
+
value: 55.300000000000004
|
657 |
+
- type: ndcg_at_10
|
658 |
+
value: 64.937
|
659 |
+
- type: ndcg_at_100
|
660 |
+
value: 67.848
|
661 |
+
- type: ndcg_at_1000
|
662 |
+
value: 68.996
|
663 |
+
- type: ndcg_at_3
|
664 |
+
value: 61.939
|
665 |
+
- type: ndcg_at_5
|
666 |
+
value: 63.556999999999995
|
667 |
+
- type: precision_at_1
|
668 |
+
value: 55.300000000000004
|
669 |
+
- type: precision_at_10
|
670 |
+
value: 7.449999999999999
|
671 |
+
- type: precision_at_100
|
672 |
+
value: 0.886
|
673 |
+
- type: precision_at_1000
|
674 |
+
value: 0.098
|
675 |
+
- type: precision_at_3
|
676 |
+
value: 22.1
|
677 |
+
- type: precision_at_5
|
678 |
+
value: 14.06
|
679 |
+
- type: recall_at_1
|
680 |
+
value: 55.300000000000004
|
681 |
+
- type: recall_at_10
|
682 |
+
value: 74.5
|
683 |
+
- type: recall_at_100
|
684 |
+
value: 88.6
|
685 |
+
- type: recall_at_1000
|
686 |
+
value: 97.7
|
687 |
+
- type: recall_at_3
|
688 |
+
value: 66.3
|
689 |
+
- type: recall_at_5
|
690 |
+
value: 70.3
|
691 |
+
- task:
|
692 |
+
type: Classification
|
693 |
+
dataset:
|
694 |
+
type: C-MTEB/MultilingualSentiment-classification
|
695 |
+
name: MTEB MultilingualSentiment
|
696 |
+
config: default
|
697 |
+
split: validation
|
698 |
+
revision: None
|
699 |
+
metrics:
|
700 |
+
- type: accuracy
|
701 |
+
value: 75.79
|
702 |
+
- type: f1
|
703 |
+
value: 75.58944709087194
|
704 |
+
- task:
|
705 |
+
type: PairClassification
|
706 |
+
dataset:
|
707 |
+
type: C-MTEB/OCNLI
|
708 |
+
name: MTEB Ocnli
|
709 |
+
config: default
|
710 |
+
split: validation
|
711 |
+
revision: None
|
712 |
+
metrics:
|
713 |
+
- type: cos_sim_accuracy
|
714 |
+
value: 71.5755278830536
|
715 |
+
- type: cos_sim_ap
|
716 |
+
value: 75.27777388526098
|
717 |
+
- type: cos_sim_f1
|
718 |
+
value: 75.04604051565377
|
719 |
+
- type: cos_sim_precision
|
720 |
+
value: 66.53061224489795
|
721 |
+
- type: cos_sim_recall
|
722 |
+
value: 86.06124604012672
|
723 |
+
- type: dot_accuracy
|
724 |
+
value: 71.5755278830536
|
725 |
+
- type: dot_ap
|
726 |
+
value: 75.27765883143745
|
727 |
+
- type: dot_f1
|
728 |
+
value: 75.04604051565377
|
729 |
+
- type: dot_precision
|
730 |
+
value: 66.53061224489795
|
731 |
+
- type: dot_recall
|
732 |
+
value: 86.06124604012672
|
733 |
+
- type: euclidean_accuracy
|
734 |
+
value: 71.5755278830536
|
735 |
+
- type: euclidean_ap
|
736 |
+
value: 75.27762982049899
|
737 |
+
- type: euclidean_f1
|
738 |
+
value: 75.04604051565377
|
739 |
+
- type: euclidean_precision
|
740 |
+
value: 66.53061224489795
|
741 |
+
- type: euclidean_recall
|
742 |
+
value: 86.06124604012672
|
743 |
+
- type: manhattan_accuracy
|
744 |
+
value: 71.41310232809963
|
745 |
+
- type: manhattan_ap
|
746 |
+
value: 75.11908556317425
|
747 |
+
- type: manhattan_f1
|
748 |
+
value: 75.0118091639112
|
749 |
+
- type: manhattan_precision
|
750 |
+
value: 67.86324786324786
|
751 |
+
- type: manhattan_recall
|
752 |
+
value: 83.84371700105596
|
753 |
+
- type: max_accuracy
|
754 |
+
value: 71.5755278830536
|
755 |
+
- type: max_ap
|
756 |
+
value: 75.27777388526098
|
757 |
+
- type: max_f1
|
758 |
+
value: 75.04604051565377
|
759 |
+
- task:
|
760 |
+
type: Classification
|
761 |
+
dataset:
|
762 |
+
type: C-MTEB/OnlineShopping-classification
|
763 |
+
name: MTEB OnlineShopping
|
764 |
+
config: default
|
765 |
+
split: test
|
766 |
+
revision: None
|
767 |
+
metrics:
|
768 |
+
- type: accuracy
|
769 |
+
value: 93.36
|
770 |
+
- type: ap
|
771 |
+
value: 91.66871784150999
|
772 |
+
- type: f1
|
773 |
+
value: 93.35216314755989
|
774 |
+
- task:
|
775 |
+
type: STS
|
776 |
+
dataset:
|
777 |
+
type: C-MTEB/PAWSX
|
778 |
+
name: MTEB PAWSX
|
779 |
+
config: default
|
780 |
+
split: test
|
781 |
+
revision: None
|
782 |
+
metrics:
|
783 |
+
- type: cos_sim_pearson
|
784 |
+
value: 24.21926662784366
|
785 |
+
- type: cos_sim_spearman
|
786 |
+
value: 27.969680921064644
|
787 |
+
- type: euclidean_pearson
|
788 |
+
value: 28.75506415195721
|
789 |
+
- type: euclidean_spearman
|
790 |
+
value: 27.969593815056058
|
791 |
+
- type: manhattan_pearson
|
792 |
+
value: 28.90608040712011
|
793 |
+
- type: manhattan_spearman
|
794 |
+
value: 28.07097299964309
|
795 |
+
- task:
|
796 |
+
type: STS
|
797 |
+
dataset:
|
798 |
+
type: C-MTEB/QBQTC
|
799 |
+
name: MTEB QBQTC
|
800 |
+
config: default
|
801 |
+
split: test
|
802 |
+
revision: None
|
803 |
+
metrics:
|
804 |
+
- type: cos_sim_pearson
|
805 |
+
value: 33.4112661812038
|
806 |
+
- type: cos_sim_spearman
|
807 |
+
value: 35.192765228905174
|
808 |
+
- type: euclidean_pearson
|
809 |
+
value: 33.57803958232971
|
810 |
+
- type: euclidean_spearman
|
811 |
+
value: 35.19270413260232
|
812 |
+
- type: manhattan_pearson
|
813 |
+
value: 33.75933288702631
|
814 |
+
- type: manhattan_spearman
|
815 |
+
value: 35.362780488430126
|
816 |
+
- task:
|
817 |
+
type: STS
|
818 |
+
dataset:
|
819 |
+
type: mteb/sts22-crosslingual-sts
|
820 |
+
name: MTEB STS22 (zh)
|
821 |
+
config: zh
|
822 |
+
split: test
|
823 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
824 |
+
metrics:
|
825 |
+
- type: cos_sim_pearson
|
826 |
+
value: 62.178764479940206
|
827 |
+
- type: cos_sim_spearman
|
828 |
+
value: 63.644049344272155
|
829 |
+
- type: euclidean_pearson
|
830 |
+
value: 61.97852518030118
|
831 |
+
- type: euclidean_spearman
|
832 |
+
value: 63.644049344272155
|
833 |
+
- type: manhattan_pearson
|
834 |
+
value: 62.3931275533103
|
835 |
+
- type: manhattan_spearman
|
836 |
+
value: 63.68720814152202
|
837 |
+
- task:
|
838 |
+
type: STS
|
839 |
+
dataset:
|
840 |
+
type: C-MTEB/STSB
|
841 |
+
name: MTEB STSB
|
842 |
+
config: default
|
843 |
+
split: test
|
844 |
+
revision: None
|
845 |
+
metrics:
|
846 |
+
- type: cos_sim_pearson
|
847 |
+
value: 81.09847341753118
|
848 |
+
- type: cos_sim_spearman
|
849 |
+
value: 81.46211495319093
|
850 |
+
- type: euclidean_pearson
|
851 |
+
value: 80.97905808856734
|
852 |
+
- type: euclidean_spearman
|
853 |
+
value: 81.46177732221445
|
854 |
+
- type: manhattan_pearson
|
855 |
+
value: 80.8737913286308
|
856 |
+
- type: manhattan_spearman
|
857 |
+
value: 81.41142532907402
|
858 |
+
- task:
|
859 |
+
type: Reranking
|
860 |
+
dataset:
|
861 |
+
type: C-MTEB/T2Reranking
|
862 |
+
name: MTEB T2Reranking
|
863 |
+
config: default
|
864 |
+
split: dev
|
865 |
+
revision: None
|
866 |
+
metrics:
|
867 |
+
- type: map
|
868 |
+
value: 66.36295416100998
|
869 |
+
- type: mrr
|
870 |
+
value: 76.42041058129412
|
871 |
+
- task:
|
872 |
+
type: Retrieval
|
873 |
+
dataset:
|
874 |
+
type: C-MTEB/T2Retrieval
|
875 |
+
name: MTEB T2Retrieval
|
876 |
+
config: default
|
877 |
+
split: dev
|
878 |
+
revision: None
|
879 |
+
metrics:
|
880 |
+
- type: map_at_1
|
881 |
+
value: 26.898
|
882 |
+
- type: map_at_10
|
883 |
+
value: 75.089
|
884 |
+
- type: map_at_100
|
885 |
+
value: 78.786
|
886 |
+
- type: map_at_1000
|
887 |
+
value: 78.86
|
888 |
+
- type: map_at_3
|
889 |
+
value: 52.881
|
890 |
+
- type: map_at_5
|
891 |
+
value: 64.881
|
892 |
+
- type: mrr_at_1
|
893 |
+
value: 88.984
|
894 |
+
- type: mrr_at_10
|
895 |
+
value: 91.681
|
896 |
+
- type: mrr_at_100
|
897 |
+
value: 91.77300000000001
|
898 |
+
- type: mrr_at_1000
|
899 |
+
value: 91.777
|
900 |
+
- type: mrr_at_3
|
901 |
+
value: 91.205
|
902 |
+
- type: mrr_at_5
|
903 |
+
value: 91.486
|
904 |
+
- type: ndcg_at_1
|
905 |
+
value: 88.984
|
906 |
+
- type: ndcg_at_10
|
907 |
+
value: 83.083
|
908 |
+
- type: ndcg_at_100
|
909 |
+
value: 86.955
|
910 |
+
- type: ndcg_at_1000
|
911 |
+
value: 87.665
|
912 |
+
- type: ndcg_at_3
|
913 |
+
value: 84.661
|
914 |
+
- type: ndcg_at_5
|
915 |
+
value: 83.084
|
916 |
+
- type: precision_at_1
|
917 |
+
value: 88.984
|
918 |
+
- type: precision_at_10
|
919 |
+
value: 41.311
|
920 |
+
- type: precision_at_100
|
921 |
+
value: 4.978
|
922 |
+
- type: precision_at_1000
|
923 |
+
value: 0.515
|
924 |
+
- type: precision_at_3
|
925 |
+
value: 74.074
|
926 |
+
- type: precision_at_5
|
927 |
+
value: 61.956999999999994
|
928 |
+
- type: recall_at_1
|
929 |
+
value: 26.898
|
930 |
+
- type: recall_at_10
|
931 |
+
value: 82.03200000000001
|
932 |
+
- type: recall_at_100
|
933 |
+
value: 94.593
|
934 |
+
- type: recall_at_1000
|
935 |
+
value: 98.188
|
936 |
+
- type: recall_at_3
|
937 |
+
value: 54.647999999999996
|
938 |
+
- type: recall_at_5
|
939 |
+
value: 68.394
|
940 |
+
- task:
|
941 |
+
type: Classification
|
942 |
+
dataset:
|
943 |
+
type: C-MTEB/TNews-classification
|
944 |
+
name: MTEB TNews
|
945 |
+
config: default
|
946 |
+
split: validation
|
947 |
+
revision: None
|
948 |
+
metrics:
|
949 |
+
- type: accuracy
|
950 |
+
value: 53.648999999999994
|
951 |
+
- type: f1
|
952 |
+
value: 51.87788185753318
|
953 |
+
- task:
|
954 |
+
type: Clustering
|
955 |
+
dataset:
|
956 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
957 |
+
name: MTEB ThuNewsClusteringP2P
|
958 |
+
config: default
|
959 |
+
split: test
|
960 |
+
revision: None
|
961 |
+
metrics:
|
962 |
+
- type: v_measure
|
963 |
+
value: 68.81293224496076
|
964 |
+
- task:
|
965 |
+
type: Clustering
|
966 |
+
dataset:
|
967 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
968 |
+
name: MTEB ThuNewsClusteringS2S
|
969 |
+
config: default
|
970 |
+
split: test
|
971 |
+
revision: None
|
972 |
+
metrics:
|
973 |
+
- type: v_measure
|
974 |
+
value: 63.60504270553153
|
975 |
+
- task:
|
976 |
+
type: Retrieval
|
977 |
+
dataset:
|
978 |
+
type: C-MTEB/VideoRetrieval
|
979 |
+
name: MTEB VideoRetrieval
|
980 |
+
config: default
|
981 |
+
split: dev
|
982 |
+
revision: None
|
983 |
+
metrics:
|
984 |
+
- type: map_at_1
|
985 |
+
value: 59.3
|
986 |
+
- type: map_at_10
|
987 |
+
value: 69.89
|
988 |
+
- type: map_at_100
|
989 |
+
value: 70.261
|
990 |
+
- type: map_at_1000
|
991 |
+
value: 70.27
|
992 |
+
- type: map_at_3
|
993 |
+
value: 67.93299999999999
|
994 |
+
- type: map_at_5
|
995 |
+
value: 69.10300000000001
|
996 |
+
- type: mrr_at_1
|
997 |
+
value: 59.3
|
998 |
+
- type: mrr_at_10
|
999 |
+
value: 69.89
|
1000 |
+
- type: mrr_at_100
|
1001 |
+
value: 70.261
|
1002 |
+
- type: mrr_at_1000
|
1003 |
+
value: 70.27
|
1004 |
+
- type: mrr_at_3
|
1005 |
+
value: 67.93299999999999
|
1006 |
+
- type: mrr_at_5
|
1007 |
+
value: 69.10300000000001
|
1008 |
+
- type: ndcg_at_1
|
1009 |
+
value: 59.3
|
1010 |
+
- type: ndcg_at_10
|
1011 |
+
value: 74.67099999999999
|
1012 |
+
- type: ndcg_at_100
|
1013 |
+
value: 76.371
|
1014 |
+
- type: ndcg_at_1000
|
1015 |
+
value: 76.644
|
1016 |
+
- type: ndcg_at_3
|
1017 |
+
value: 70.678
|
1018 |
+
- type: ndcg_at_5
|
1019 |
+
value: 72.783
|
1020 |
+
- type: precision_at_1
|
1021 |
+
value: 59.3
|
1022 |
+
- type: precision_at_10
|
1023 |
+
value: 8.95
|
1024 |
+
- type: precision_at_100
|
1025 |
+
value: 0.972
|
1026 |
+
- type: precision_at_1000
|
1027 |
+
value: 0.099
|
1028 |
+
- type: precision_at_3
|
1029 |
+
value: 26.200000000000003
|
1030 |
+
- type: precision_at_5
|
1031 |
+
value: 16.74
|
1032 |
+
- type: recall_at_1
|
1033 |
+
value: 59.3
|
1034 |
+
- type: recall_at_10
|
1035 |
+
value: 89.5
|
1036 |
+
- type: recall_at_100
|
1037 |
+
value: 97.2
|
1038 |
+
- type: recall_at_1000
|
1039 |
+
value: 99.4
|
1040 |
+
- type: recall_at_3
|
1041 |
+
value: 78.60000000000001
|
1042 |
+
- type: recall_at_5
|
1043 |
+
value: 83.7
|
1044 |
+
- task:
|
1045 |
+
type: Classification
|
1046 |
+
dataset:
|
1047 |
+
type: C-MTEB/waimai-classification
|
1048 |
+
name: MTEB Waimai
|
1049 |
+
config: default
|
1050 |
+
split: test
|
1051 |
+
revision: None
|
1052 |
+
metrics:
|
1053 |
+
- type: accuracy
|
1054 |
+
value: 88.07000000000001
|
1055 |
+
- type: ap
|
1056 |
+
value: 72.68881791758656
|
1057 |
+
- type: f1
|
1058 |
+
value: 86.647906274628
|
1059 |
+
language:
|
1060 |
+
- en
|
1061 |
license: mit
|
1062 |
---
|
1063 |
+
|
1064 |
+
# gte-large-zh
|
1065 |
+
|
1066 |
+
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
|
1067 |
+
|
1068 |
+
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer different sizes of models for both Chinese and English Languages. The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
|
1069 |
+
|
1070 |
+
## Model List
|
1071 |
+
|
1072 |
+
| Models | Language | Max Sequence Length | Dimension | Model Size |
|
1073 |
+
|:-----: | :-----: |:-----: |:-----: |:-----: |
|
1074 |
+
|[GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 0.67GB |
|
1075 |
+
|[GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 1024 | 0.67GB |
|
1076 |
+
|[GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 1024 | 0.67GB |
|
1077 |
+
|[GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 0.67GB |
|
1078 |
+
|[GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 1024 | 0.67GB |
|
1079 |
+
|[GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 1024 | 0.67GB |
|
1080 |
+
|
1081 |
+
|
1082 |
+
## Metrics
|
1083 |
+
|
1084 |
+
We compared the performance of the GTE models with other popular text embedding models on the MTEB (CMTEB for Chinese language) benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
1085 |
+
|
1086 |
+
|
1087 |
+
## Usage
|
1088 |
+
|
1089 |
+
Code example
|
1090 |
+
|
1091 |
+
```python
|
1092 |
+
import torch.nn.functional as F
|
1093 |
+
from torch import Tensor
|
1094 |
+
from transformers import AutoTokenizer, AutoModel
|
1095 |
+
|
1096 |
+
input_texts = [
|
1097 |
+
"中国的首都是哪里",
|
1098 |
+
"你喜欢去哪里旅游",
|
1099 |
+
"北京",
|
1100 |
+
"今天中午吃什么"
|
1101 |
+
]
|
1102 |
+
|
1103 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-base-zh")
|
1104 |
+
model = AutoModel.from_pretrained("thenlper/gte-base-zh")
|
1105 |
+
|
1106 |
+
# Tokenize the input texts
|
1107 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
1108 |
+
|
1109 |
+
outputs = model(**batch_dict)
|
1110 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
1111 |
+
|
1112 |
+
# (Optionally) normalize embeddings
|
1113 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
1114 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
1115 |
+
print(scores.tolist())
|
1116 |
+
```
|
1117 |
+
|
1118 |
+
Use with sentence-transformers:
|
1119 |
+
```python
|
1120 |
+
from sentence_transformers import SentenceTransformer
|
1121 |
+
from sentence_transformers.util import cos_sim
|
1122 |
+
|
1123 |
+
sentences = ['中国的首都是哪里', '中国的首都是北京']
|
1124 |
+
|
1125 |
+
model = SentenceTransformer('thenlper/gte-base-zh')
|
1126 |
+
embeddings = model.encode(sentences)
|
1127 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
1128 |
+
```
|
1129 |
+
|
1130 |
+
### Limitation
|
1131 |
+
|
1132 |
+
This model exclusively caters to Chinese texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|
1133 |
+
|
1134 |
+
### Citation
|
1135 |
+
|
1136 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
1137 |
+
|
1138 |
+
```
|
1139 |
+
@misc{li2023general,
|
1140 |
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
1141 |
+
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
1142 |
+
year={2023},
|
1143 |
+
eprint={2308.03281},
|
1144 |
+
archivePrefix={arXiv},
|
1145 |
+
primaryClass={cs.CL}
|
1146 |
+
}
|
1147 |
+
```
|