--- language: - nl license: apache-2.0 base_model: bert-base-uncased tags: - abc - generated_from_trainer datasets: - stsb_multi_mt metrics: - accuracy model-index: - name: bert-base-uncased-FinedTuned results: [] --- # bert-base-uncased-FinedTuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stsb_multi_mt dataset. It achieves the following results on the evaluation set: - Loss: 2.9693 - Accuracy: 0.1762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.5754 | 5.5556 | 1000 | 2.2186 | 0.1762 | | 0.7323 | 11.1111 | 2000 | 2.8135 | 0.1762 | | 0.4394 | 16.6667 | 3000 | 2.9377 | 0.1762 | | 0.3782 | 22.2222 | 4000 | 2.9693 | 0.1762 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1