--- library_name: transformers tags: - unsloth datasets: - AIForge/OpenHermes-vi-filtered language: - vi --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** thangvip - **Language(s) (NLP):** Vietnamese - **Finetuned from model:** vietgpt/Sailor-1.8B ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained("thangvip/vilord-1.8B-instruct", device_map="auto", cache_dir="./cache").eval() tokenizer = AutoTokenizer.from_pretrained("thangvip/vilord-1.8B-instruct", cache_dir="./cache") messages = [ {'role': 'system', 'content': "bạn là trợ lý AI hữu ích"}, {"role": "user", "content": "Nước nào có diện tích lớn nhất?"}, ] text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) print(text) inputs = tokenizer(text, return_tensors="pt") inputs = {k: v.to("cuda") for k, v in inputs.items()} outputs = model.generate(**inputs, tokenizer=tokenizer, max_new_tokens=256, do_sample=True, top_p=0.95, temperature=0.1, repetition_penalty=1.2, eos_token_id=tokenizer.eos_token_id, stop_strings=['<|im_end|>']) print(tokenizer.decode(outputs[0])) ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]