--- license: apache-2.0 base_model: vietgpt/bert-30M-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-30M-uncased-classification-CMC-first-intent results: [] --- # bert-30M-uncased-classification-CMC-first-intent This model is a fine-tuned version of [vietgpt/bert-30M-uncased](https://huggingface.co/vietgpt/bert-30M-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0086 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 28 | 0.9113 | 0.4694 | | No log | 2.0 | 56 | 0.8776 | 0.4898 | | No log | 3.0 | 84 | 0.8197 | 0.5714 | | No log | 4.0 | 112 | 0.5064 | 0.9388 | | No log | 5.0 | 140 | 0.2618 | 0.9388 | | No log | 6.0 | 168 | 0.2210 | 0.9388 | | No log | 7.0 | 196 | 0.1956 | 0.9592 | | No log | 8.0 | 224 | 0.1718 | 0.9796 | | No log | 9.0 | 252 | 0.1478 | 0.9592 | | No log | 10.0 | 280 | 0.1190 | 0.9796 | | No log | 11.0 | 308 | 0.0898 | 0.9796 | | No log | 12.0 | 336 | 0.0926 | 0.9796 | | No log | 13.0 | 364 | 0.0654 | 0.9796 | | No log | 14.0 | 392 | 0.0635 | 0.9796 | | No log | 15.0 | 420 | 0.0475 | 0.9796 | | No log | 16.0 | 448 | 0.0469 | 0.9796 | | No log | 17.0 | 476 | 0.0391 | 0.9796 | | 0.4397 | 18.0 | 504 | 0.0325 | 1.0 | | 0.4397 | 19.0 | 532 | 0.0272 | 1.0 | | 0.4397 | 20.0 | 560 | 0.0267 | 1.0 | | 0.4397 | 21.0 | 588 | 0.0216 | 1.0 | | 0.4397 | 22.0 | 616 | 0.0200 | 1.0 | | 0.4397 | 23.0 | 644 | 0.0185 | 1.0 | | 0.4397 | 24.0 | 672 | 0.0185 | 1.0 | | 0.4397 | 25.0 | 700 | 0.0141 | 1.0 | | 0.4397 | 26.0 | 728 | 0.0151 | 1.0 | | 0.4397 | 27.0 | 756 | 0.0140 | 1.0 | | 0.4397 | 28.0 | 784 | 0.0132 | 1.0 | | 0.4397 | 29.0 | 812 | 0.0127 | 1.0 | | 0.4397 | 30.0 | 840 | 0.0118 | 1.0 | | 0.4397 | 31.0 | 868 | 0.0113 | 1.0 | | 0.4397 | 32.0 | 896 | 0.0113 | 1.0 | | 0.4397 | 33.0 | 924 | 0.0107 | 1.0 | | 0.4397 | 34.0 | 952 | 0.0103 | 1.0 | | 0.4397 | 35.0 | 980 | 0.0103 | 1.0 | | 0.0247 | 36.0 | 1008 | 0.0098 | 1.0 | | 0.0247 | 37.0 | 1036 | 0.0097 | 1.0 | | 0.0247 | 38.0 | 1064 | 0.0094 | 1.0 | | 0.0247 | 39.0 | 1092 | 0.0096 | 1.0 | | 0.0247 | 40.0 | 1120 | 0.0094 | 1.0 | | 0.0247 | 41.0 | 1148 | 0.0095 | 1.0 | | 0.0247 | 42.0 | 1176 | 0.0094 | 1.0 | | 0.0247 | 43.0 | 1204 | 0.0092 | 1.0 | | 0.0247 | 44.0 | 1232 | 0.0090 | 1.0 | | 0.0247 | 45.0 | 1260 | 0.0090 | 1.0 | | 0.0247 | 46.0 | 1288 | 0.0086 | 1.0 | | 0.0247 | 47.0 | 1316 | 0.0086 | 1.0 | | 0.0247 | 48.0 | 1344 | 0.0086 | 1.0 | | 0.0247 | 49.0 | 1372 | 0.0086 | 1.0 | | 0.0247 | 50.0 | 1400 | 0.0086 | 1.0 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1