# 推論用コード Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。 このコードで生成されたjsonlファイルは課題の成果として提出可能なフォーマットになっております。 ``` !pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install -U peft ``` ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import json from pathlib import Path from typing import Dict, Any, Optional from tqdm import tqdm import time from datetime import datetime class GPUPredictions: def __init__(self, model_id="testmoto/gemma-2-llm2024-01", adapter_path=None, max_tokens=1024, temp=0.0, top_p=0.9, seed=3407): self.model_id = model_id self.adapter_path = adapter_path self.max_tokens = max_tokens self.temp = temp self.top_p = top_p self.seed = seed print(f"Loading model: {model_id}") torch.cuda.empty_cache() # GPU設定 n_gpus = torch.cuda.device_count() max_memory = {i: "20GiB" for i in range(n_gpus)} max_memory["cpu"] = "100GiB" # トークナイザーの初期化 self.tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token try: self.model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto", max_memory=max_memory, low_cpu_mem_usage=True, trust_remote_code=True ) except Exception as e: print(f"First loading attempt failed: {str(e)}") print("Trying alternative loading method...") self.model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True, trust_remote_code=True ) if adapter_path: print(f"Loading adapter from {adapter_path}") self.model.load_adapter(adapter_path) # Generate設定 self.gen_config = { "max_new_tokens": max_tokens, "temperature": temp, "top_p": top_p, "do_sample": temp > 0, "pad_token_id": self.tokenizer.pad_token_id, "eos_token_id": self.tokenizer.eos_token_id } print("Model loaded successfully") self.device = next(self.model.parameters()).device print(f"Model is on device: {self.device}") @torch.inference_mode() def generate_response(self, prompt: str) -> str: """効率的な応答生成""" try: inputs = self.tokenizer(prompt, return_tensors="pt", padding=True) inputs = {k: v.to(self.device) for k, v in inputs.items()} with torch.cuda.amp.autocast(): outputs = self.model.generate( **inputs, **self.gen_config ) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) if prompt in response: response = response[len(prompt):].strip() return response except Exception as e: print(f"Error during generation: {str(e)}") raise def load_tasks(self, file_path: str) -> list: """ELYZAタスクの読み込み""" datasets = [] with open(file_path, "r") as f: for line in f: if line.strip(): datasets.append(json.loads(line.strip())) return datasets def run_inference(self, input_file="elyza-tasks-100-TV_0.jsonl", output_file="gpu_results.jsonl"): """バッチ処理による効率的な推論実行""" tasks = self.load_tasks(input_file) results = [] start_time = time.time() execution_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"Execution started at: {execution_date}") print(f"Total tasks: {len(tasks)}") print("-" * 50) for task in tqdm(tasks, desc="Processing tasks"): task_start_time = time.time() prompt = f"""### Instruction: {task['input']} ### Response: """ try: response = self.generate_response(prompt) try: answer = response.split('### Response: ')[-1] except: answer = response task_end_time = time.time() task_duration = task_end_time - task_start_time result = { "task_id": task["task_id"], "input": task["input"], "output": answer } results.append(result) print(f"\nTask {task['task_id']} completed in {task_duration:.2f} seconds") print(f"Input: {task['input'][:100]}...") print(f"Output: {answer[:100]}...") print("-" * 50) with open(output_file, 'a', encoding='utf-8') as f: json.dump(result, f, ensure_ascii=False) f.write('\n') if task["task_id"] % 5 == 0: torch.cuda.empty_cache() except Exception as e: print(f"Error processing task {task['task_id']}: {str(e)}") continue total_time = time.time() - start_time avg_time = total_time / len(tasks) summary = { "execution_date": execution_date, "total_tasks": len(tasks), "total_time": round(total_time, 2), "average_time_per_task": round(avg_time, 2), "model_id": self.model_id, "adapter_used": self.adapter_path is not None } print("\nExecution Summary:") print(f"Total execution time: {total_time:.2f} seconds") print(f"Average time per task: {avg_time:.2f} seconds") print(f"Results saved to: {output_file}") summary_file = output_file.replace('.jsonl', '_summary.json') with open(summary_file, 'w', encoding='utf-8') as f: json.dump(summary, f, ensure_ascii=False, indent=2) return results ```