--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-2-9b tags: - mlx --- # testmoto/gemma-2-9b-synthetic_coding The Model [testmoto/gemma-2-9b-synthetic_coding](https://huggingface.co/testmoto/gemma-2-9b-synthetic_coding) was converted to MLX format from [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("testmoto/gemma-2-9b-synthetic_coding") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```