--- language: - en library_name: transformers pipeline_tag: text-generation datasets: - jondurbin/airoboros-2.2 - Open-Orca/OpenOrca - garage-bAInd/Open-Platypus - WizardLM/WizardLM_evol_instruct_V2_196k tags: - llama-2 - code - TensorBlock - GGUF license: llama2 base_model: uukuguy/speechless-codellama-34b-v1.9 model-index: - name: SpeechlessCoder results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 70.73 name: pass@1 verified: false ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## uukuguy/speechless-codellama-34b-v1.9 - GGUF This repo contains GGUF format model files for [uukuguy/speechless-codellama-34b-v1.9](https://huggingface.co/uukuguy/speechless-codellama-34b-v1.9). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [speechless-codellama-34b-v1.9-Q2_K.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q2_K.gguf) | Q2_K | 12.506 GB | smallest, significant quality loss - not recommended for most purposes | | [speechless-codellama-34b-v1.9-Q3_K_S.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q3_K_S.gguf) | Q3_K_S | 14.605 GB | very small, high quality loss | | [speechless-codellama-34b-v1.9-Q3_K_M.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q3_K_M.gguf) | Q3_K_M | 16.306 GB | very small, high quality loss | | [speechless-codellama-34b-v1.9-Q3_K_L.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q3_K_L.gguf) | Q3_K_L | 17.772 GB | small, substantial quality loss | | [speechless-codellama-34b-v1.9-Q4_0.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q4_0.gguf) | Q4_0 | 19.052 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [speechless-codellama-34b-v1.9-Q4_K_S.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q4_K_S.gguf) | Q4_K_S | 19.192 GB | small, greater quality loss | | [speechless-codellama-34b-v1.9-Q4_K_M.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q4_K_M.gguf) | Q4_K_M | 20.220 GB | medium, balanced quality - recommended | | [speechless-codellama-34b-v1.9-Q5_0.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q5_0.gguf) | Q5_0 | 23.237 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [speechless-codellama-34b-v1.9-Q5_K_S.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q5_K_S.gguf) | Q5_K_S | 23.237 GB | large, low quality loss - recommended | | [speechless-codellama-34b-v1.9-Q5_K_M.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q5_K_M.gguf) | Q5_K_M | 23.839 GB | large, very low quality loss - recommended | | [speechless-codellama-34b-v1.9-Q6_K.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q6_K.gguf) | Q6_K | 27.684 GB | very large, extremely low quality loss | | [speechless-codellama-34b-v1.9-Q8_0.gguf](https://huggingface.co/tensorblock/speechless-codellama-34b-v1.9-GGUF/blob/main/speechless-codellama-34b-v1.9-Q8_0.gguf) | Q8_0 | 35.856 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/speechless-codellama-34b-v1.9-GGUF --include "speechless-codellama-34b-v1.9-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/speechless-codellama-34b-v1.9-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```