--- tags: - generated_from_trainer - TensorBlock - GGUF metrics: - accuracy inference: parameters: max_new_tokens: 64 do_sample: true repetition_penalty: 1.1 no_repeat_ngram_size: 5 guidance_scale: 1.01 eta_cutoff: 0.001 widget: - text: My name is El Microondas the Wise and example_title: El Microondas - text: A meme is example_title: meme - text: Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had example_title: Coreference resolution - text: 'On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book' example_title: Logic puzzles - text: The two men running to become New York City's next mayor will face off in their first debate Wednesday night example_title: Reading comprehension pipeline_tag: text-generation license: apache-2.0 datasets: - pszemraj/simplepile-lite base_model: pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e - GGUF This repo contains GGUF format model files for [pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e](https://huggingface.co/pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q2_K.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q2_K.gguf) | Q2_K | 0.017 GB | smallest, significant quality loss - not recommended for most purposes | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_S.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_S.gguf) | Q3_K_S | 0.019 GB | very small, high quality loss | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_M.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_M.gguf) | Q3_K_M | 0.019 GB | very small, high quality loss | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_L.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q3_K_L.gguf) | Q3_K_L | 0.019 GB | small, substantial quality loss | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q4_0.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q4_0.gguf) | Q4_0 | 0.021 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q4_K_S.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q4_K_S.gguf) | Q4_K_S | 0.021 GB | small, greater quality loss | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q4_K_M.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q4_K_M.gguf) | Q4_K_M | 0.021 GB | medium, balanced quality - recommended | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q5_0.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q5_0.gguf) | Q5_0 | 0.023 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q5_K_S.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q5_K_S.gguf) | Q5_K_S | 0.023 GB | large, low quality loss - recommended | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q5_K_M.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q5_K_M.gguf) | Q5_K_M | 0.023 GB | large, very low quality loss - recommended | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q6_K.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q6_K.gguf) | Q6_K | 0.025 GB | very large, extremely low quality loss | | [pythia-31m-simplepile-lite-2048-scratch-2e-Q8_0.gguf](https://huggingface.co/tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF/blob/main/pythia-31m-simplepile-lite-2048-scratch-2e-Q8_0.gguf) | Q8_0 | 0.032 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF --include "pythia-31m-simplepile-lite-2048-scratch-2e-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/pythia-31m-simplepile-lite-2048-scratch-2e-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```