---
license: apache-2.0
language:
- en
metrics:
- accuracy
- bertscore
- bleu
tags:
- slm
- llama
- tiny
- tinyllama
- TensorBlock
- GGUF
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
base_model: venkycs/Zyte-1B
---
## venkycs/Zyte-1B - GGUF
This repo contains GGUF format model files for [venkycs/Zyte-1B](https://huggingface.co/venkycs/Zyte-1B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|system|>
{system_prompt}
<|user|>
{prompt}
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Zyte-1B-Q2_K.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q2_K.gguf) | Q2_K | 0.432 GB | smallest, significant quality loss - not recommended for most purposes |
| [Zyte-1B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q3_K_S.gguf) | Q3_K_S | 0.499 GB | very small, high quality loss |
| [Zyte-1B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q3_K_M.gguf) | Q3_K_M | 0.548 GB | very small, high quality loss |
| [Zyte-1B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q3_K_L.gguf) | Q3_K_L | 0.592 GB | small, substantial quality loss |
| [Zyte-1B-Q4_0.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q4_0.gguf) | Q4_0 | 0.637 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Zyte-1B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q4_K_S.gguf) | Q4_K_S | 0.640 GB | small, greater quality loss |
| [Zyte-1B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q4_K_M.gguf) | Q4_K_M | 0.668 GB | medium, balanced quality - recommended |
| [Zyte-1B-Q5_0.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q5_0.gguf) | Q5_0 | 0.766 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Zyte-1B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q5_K_S.gguf) | Q5_K_S | 0.766 GB | large, low quality loss - recommended |
| [Zyte-1B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q5_K_M.gguf) | Q5_K_M | 0.782 GB | large, very low quality loss - recommended |
| [Zyte-1B-Q6_K.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q6_K.gguf) | Q6_K | 0.903 GB | very large, extremely low quality loss |
| [Zyte-1B-Q8_0.gguf](https://huggingface.co/tensorblock/Zyte-1B-GGUF/blob/main/Zyte-1B-Q8_0.gguf) | Q8_0 | 1.170 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Zyte-1B-GGUF --include "Zyte-1B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Zyte-1B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```